On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces

Detalhes bibliográficos
Autor(a) principal: Santos, Reillon Oriel Carvalho
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal Fluminense (RIUFF)
Texto Completo: http://app.uff.br/riuff/handle/1/29244
Resumo: In 1944 Zariski discovered that Bertini’s theorem on variable singular points is no longer true when we pass from a field of characteristic zero to a field of positive characteristic. In other words, he found fibrations by singular curves, which only exist in positive characteristic. Such fibrations are connected with many interesting phenomena. For instance, the extension of Enrique’s classification of surfaces to positive characteristic (Bombieri and Mumford in 1976), the counterexamples of Kodaira vanishing theorem (Mukai in 2013 and Zheng in 2016) and the isolated singularities with infinity Milnor number (Hefez, Rodrigues and Salomão in 2019). In this work we are going to show that the smoothing process introduced by Shimada in 1991 can be used to classify the set of fibrations by genus two singular curves, up to isomorphism among their generic fibers, such that their smoothing are elliptic fibrations on rational surfaces. Moreover we will also describe the vector fields that can be used to recover such fibrations by singular curves via quotient of rational elliptic surfaces.
id UFF-2_05584c0ced86989ff07cb50dc92d058f
oai_identifier_str oai:app.uff.br:1/29244
network_acronym_str UFF-2
network_name_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository_id_str 2120
spelling On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfacesIn 1944 Zariski discovered that Bertini’s theorem on variable singular points is no longer true when we pass from a field of characteristic zero to a field of positive characteristic. In other words, he found fibrations by singular curves, which only exist in positive characteristic. Such fibrations are connected with many interesting phenomena. For instance, the extension of Enrique’s classification of surfaces to positive characteristic (Bombieri and Mumford in 1976), the counterexamples of Kodaira vanishing theorem (Mukai in 2013 and Zheng in 2016) and the isolated singularities with infinity Milnor number (Hefez, Rodrigues and Salomão in 2019). In this work we are going to show that the smoothing process introduced by Shimada in 1991 can be used to classify the set of fibrations by genus two singular curves, up to isomorphism among their generic fibers, such that their smoothing are elliptic fibrations on rational surfaces. Moreover we will also describe the vector fields that can be used to recover such fibrations by singular curves via quotient of rational elliptic surfaces.Em 1944 Zariski descobriu que o teorema de Bertini sobre pontos singulares variáveis não é mais verdadeiro quando passamos de um corpo de característica zero para um corpo de característica positiva. Em outras palavras, ele encontrou fibrações por curvas singulares, que só existem em característica positiva. Tais fibrações estão conectadas com muitos fenômenos interessantes. Por exemplo, a extensão da classificação de Enriques de superfícies para características positivas (Bombieri e Mumford em 1976), os contraexemplos do teorema do anulamento de Kodaira (Mukai em 2013 e Zheng em 2016) e as singularidades isoladas com número de Milnor infinito (Hefez, Rodrigues e Salomão em 2019). Neste trabalho vamos mostrar que o processo de suavização introduzido por Shimada em 1991 pode ser usado para classificar o conjunto de fibrações por curvas singulares de gênero dois - a menos de isomorfismos entre suas fibras genéricas - de modo que suas suavizações sejam fibrações elípticas em superfícies racionais. Além disso, também descreveremos os campos de vetores que podem ser usados para recuperar tais fibrações por curvas singulares via o quociente de superfícies elípticas racionais.69 f.Salomão, RodrigoRodrigues, João Hélder OlmedoSantos, Reillon Oriel Carvalho2023-06-29T18:04:39Z2023-06-29T18:04:39Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSANTOS, Reillon Oriel Carvalho. On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces. 2022. 69 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2022.http://app.uff.br/riuff/handle/1/29244CC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2023-06-29T18:04:43Zoai:app.uff.br:1/29244Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T11:01:22.229722Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces
title On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces
spellingShingle On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces
Santos, Reillon Oriel Carvalho
title_short On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces
title_full On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces
title_fullStr On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces
title_full_unstemmed On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces
title_sort On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces
author Santos, Reillon Oriel Carvalho
author_facet Santos, Reillon Oriel Carvalho
author_role author
dc.contributor.none.fl_str_mv Salomão, Rodrigo
Rodrigues, João Hélder Olmedo
dc.contributor.author.fl_str_mv Santos, Reillon Oriel Carvalho
description In 1944 Zariski discovered that Bertini’s theorem on variable singular points is no longer true when we pass from a field of characteristic zero to a field of positive characteristic. In other words, he found fibrations by singular curves, which only exist in positive characteristic. Such fibrations are connected with many interesting phenomena. For instance, the extension of Enrique’s classification of surfaces to positive characteristic (Bombieri and Mumford in 1976), the counterexamples of Kodaira vanishing theorem (Mukai in 2013 and Zheng in 2016) and the isolated singularities with infinity Milnor number (Hefez, Rodrigues and Salomão in 2019). In this work we are going to show that the smoothing process introduced by Shimada in 1991 can be used to classify the set of fibrations by genus two singular curves, up to isomorphism among their generic fibers, such that their smoothing are elliptic fibrations on rational surfaces. Moreover we will also describe the vector fields that can be used to recover such fibrations by singular curves via quotient of rational elliptic surfaces.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-29T18:04:39Z
2023-06-29T18:04:39Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SANTOS, Reillon Oriel Carvalho. On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces. 2022. 69 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2022.
http://app.uff.br/riuff/handle/1/29244
identifier_str_mv SANTOS, Reillon Oriel Carvalho. On the classification of fibrations by genus two singular curves via fibrations by elliptic curves on surfaces. 2022. 69 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2022.
url http://app.uff.br/riuff/handle/1/29244
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv CC-BY-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv CC-BY-SA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
collection Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv riuff@id.uff.br
_version_ 1811823638254452736