Dinâmica de spins em nanoestruturas metálicas
Autor(a) principal: | |
---|---|
Data de Publicação: | 2011 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
Texto Completo: | https://app.uff.br/riuff/handle/1/19126 |
Resumo: | In the present work, we investigate the spin pumping mechanism. In 2002, Tserkovnyak et al. proposed that a precessing magnetization of a magnetic unit coupled to a non-magnetic metal can transfer angular momentum to the conduction electrons, creating a spin flow that propagates across the non-magnetic metal [1]. This flux of angular momentum, or spin current, contributes to the damping of the precessing magnetization and propagates without a net charge current. The spin current can be used to excite a second magnetic unit, far away from the source, transporting information through conductors. To study this phenomenon, we developed a fully quantum-mechanical approach, based on linear response theory, to calculate the expected value of the spin current emitted by the precession of a magnetization of a magnetic unit in contact with a non-magnetic metal. We showed that this quantity is related to generalized dynamical transverse magnetic susceptibilities. In this work, we also detail the semi-classical theory developed by Tserkovnyal et al. [1], and compare it with our formulation. To illustrate this comparison quantitatively, we investigate some relatively simple systems. An excellent agreement between the two theories is revealed, considering the differences between the approaches: while our theory is completely based on quantum mechanics to obtain the spin current that emanates from a precessing magnetization, the semi-classical theory is based on scattering matrices and makes use of the adiabatic approximation to calculate the spin current pumped inside the contacts, away from the magnetic unit. Moreover, we calculate the spatial distribution of the spin currents, as a function of frequency and time, for magnetic impurities embedded in unidimensional systems, and we show that quantum interferences play a central role in this phenomenon. We also use our theory to study the propagation of spin currents in carbon-based nanostructures. We show that carbon nanotubes are able to carry information stored in a precessing magnetic moment for long distances with very little dispersion and with tunable degrees of attenuation. These systems, known to function as conduits for electrons and for phonons, are also efficient spin-current waveguides. Pulsed magnetic excitations are predicted to travel with the nanotube Fermi velocity and are able to induce similar excitations in remote locations [2]. In addition to the perturbation in carbon nanotubes, we also demonstrate that graphene can function as gate-controllable transistors for pumped spin currents. Furthermore, we propose as a proof of concept how these spin currents can be modulated by an electrostatic gate [3]. Because our proposal involves nano-sized systems that function with very high speeds and in the absence of any applied bias, it is potentially useful for the development of transistors capable of combining large processing speeds, enhanced integration and extremely low power consumption. As the spin current tends to travel omni-directionally, a large fraction of this information never reaches the probe and is lost. We propose, in analogy to optics systems, that a curved boundary between a gated and a non-gated region within graphene acts as an ideal lens for spin currents despite being entirely of non-magnetic nature. We show as a proof of concept that such lenses can be utilized to redirect the spin current that travels away from a source onto a focus region where a magnetic probe is located, saving a considerable fraction of the magnetic information that would be otherwise lost. |
id |
UFF-2_0617c5347487671d23a8d75eb1efe916 |
---|---|
oai_identifier_str |
oai:app.uff.br:1/19126 |
network_acronym_str |
UFF-2 |
network_name_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository_id_str |
2120 |
spelling |
Dinâmica de spins em nanoestruturas metálicasMagnetismoNanotubos de carbonoNanoestruturaSpinCNPQ::CIENCIAS EXATAS E DA TERRA::FISICAIn the present work, we investigate the spin pumping mechanism. In 2002, Tserkovnyak et al. proposed that a precessing magnetization of a magnetic unit coupled to a non-magnetic metal can transfer angular momentum to the conduction electrons, creating a spin flow that propagates across the non-magnetic metal [1]. This flux of angular momentum, or spin current, contributes to the damping of the precessing magnetization and propagates without a net charge current. The spin current can be used to excite a second magnetic unit, far away from the source, transporting information through conductors. To study this phenomenon, we developed a fully quantum-mechanical approach, based on linear response theory, to calculate the expected value of the spin current emitted by the precession of a magnetization of a magnetic unit in contact with a non-magnetic metal. We showed that this quantity is related to generalized dynamical transverse magnetic susceptibilities. In this work, we also detail the semi-classical theory developed by Tserkovnyal et al. [1], and compare it with our formulation. To illustrate this comparison quantitatively, we investigate some relatively simple systems. An excellent agreement between the two theories is revealed, considering the differences between the approaches: while our theory is completely based on quantum mechanics to obtain the spin current that emanates from a precessing magnetization, the semi-classical theory is based on scattering matrices and makes use of the adiabatic approximation to calculate the spin current pumped inside the contacts, away from the magnetic unit. Moreover, we calculate the spatial distribution of the spin currents, as a function of frequency and time, for magnetic impurities embedded in unidimensional systems, and we show that quantum interferences play a central role in this phenomenon. We also use our theory to study the propagation of spin currents in carbon-based nanostructures. We show that carbon nanotubes are able to carry information stored in a precessing magnetic moment for long distances with very little dispersion and with tunable degrees of attenuation. These systems, known to function as conduits for electrons and for phonons, are also efficient spin-current waveguides. Pulsed magnetic excitations are predicted to travel with the nanotube Fermi velocity and are able to induce similar excitations in remote locations [2]. In addition to the perturbation in carbon nanotubes, we also demonstrate that graphene can function as gate-controllable transistors for pumped spin currents. Furthermore, we propose as a proof of concept how these spin currents can be modulated by an electrostatic gate [3]. Because our proposal involves nano-sized systems that function with very high speeds and in the absence of any applied bias, it is potentially useful for the development of transistors capable of combining large processing speeds, enhanced integration and extremely low power consumption. As the spin current tends to travel omni-directionally, a large fraction of this information never reaches the probe and is lost. We propose, in analogy to optics systems, that a curved boundary between a gated and a non-gated region within graphene acts as an ideal lens for spin currents despite being entirely of non-magnetic nature. We show as a proof of concept that such lenses can be utilized to redirect the spin current that travels away from a source onto a focus region where a magnetic probe is located, saving a considerable fraction of the magnetic information that would be otherwise lost.Conselho Nacional de Desenvolvimento Cientifico e TecnológicoCom o objetivo de compreender melhor a dinâmica de spins em nanoestruturas metálicas, investigamos o fenômeno do bombeamento de spins. Em 2002, Tserkovnyak e colaboradores propuseram que o movimento de precessão da magnetização de uma unidade magnética em contato com um metal não magnético poderia transferir momento angular aos elétrons de condução, gerando um fluxo de spins que se propagaria através do metal não magnético [1]. Este fluxo de momento angular, ou corrente de spins, contribui para o amortecimento da precessão da magnetização e se propaga sem a necessidade da existência de uma corrente de carga líquida. A corrente de spins pode ser usada para excitar uma outra unidade magnética localizada longe da primeira e, dessa forma, transportar informação através de meios condutores. Para estudar este fenômeno, desenvolvemos um formalismo inteiramente quântico, baseado na teoria de resposta linear, para calcular o valor esperado da corrente de spins emitida pela precessão da magnetização de uma unidade magnética conectada a um metal não magnético. Mostramos que esta grandeza pode ser relacionada com uma susceptibilidade transversa magnética dinâmica generalizada. Neste trabalho, detalhamos também a teoria semi-clássica desenvolvida por Tserkovnyak e colaboradores [1] com o intuito de compará-la com a nossa formulação. Para ilustrar quantitativamente esta comparação, investigamos alguns sistemas relativamente simples. Mostramos que há um ótimo acordo entre as duas teorias, considerando suas diferenças de abordagem: enquanto em nossa teoria empregamos o formalismo da mecânica quântica para calcular a corrente de spins que emana da magnetização que foi posta em movimento de precessão, a teoria semi-clássica proposta por Tserkovnyak e colaboradores é baseada em matrizes de espalhamento e utiliza-se da aproximação adiabática para calcular a corrente bombeada para os contatos, longe da unidade magnética. Além disso, calculamos a variação espacial da corrente de spins, tanto no domínio das frequências quanto do tempo, para impurezas magnéticas embebidas em alguns sistemas unidimensionais, e mostramos que interferências quânticas desempenham um papel relevante neste fenômeno. Empregamos também a nossa teoria para estudar a propagação de correntes de spins em algumas nanoestruturas a base de carbono. Mostramos que os nanotubos de carbono carregam a informação de spin por longas distâncias com pouca dispersão e com atenuação regulável. Estes sistemas, já conhecidos por serem bons condutores de elétrons e de fônons, se mostram também eficientes guias de ondas para correntes de spins. Investigamos a propagação de um pulso de corrente de spins através de nanotubos metálicos e mostramos que esta excitação viaja com a velocidade de Fermi e é capaz de induzir excitações similares em outras impurezas magnéticas presentes no meio [2]. Além da perturbação de spins em nanotubos de carbono, estudamos também a influência de um potencial de porta eletrostático na propagação desta perturbação em uma tira de grafeno. Mostramos que estes sistemas funcionam como transistores para a corrente de spins bombeada. Em outras palavras, podemos controlar a perturbação que atravessa uma região da tira com um potencial eletrostático (que não depende do spin), permitindo ou bloqueando a passagem da corrente de spin através dela [3]. Os resultados acima sugerem que os materiais a base de carbono possuem grande potencial para serem empregados em dispositivos spintrônicos como transistores e memórias de alta velocidade, consumo de energia extremamente baixo e alta integração com os atuais dispositivos eletrônicos. Como a corrente de spins emitida por uma magnetização precessionante se propaga isotropicamente, uma grande fração da informação magnética é perdida quando utilizamos sondas locais. Propusemos então, em analogia com sistemas ópticos, que uma interface curva entre uma região com um potencial eletrostático e outra sem potencial aplicado atua como uma lente para as correntes de spins, apesar de serem de natureza não magnética. Mostramos que estas lentes podem ser utilizadas para redirecionar as correntes de spins que saem da fonte para uma região focalizada, onde uma sonda magnética pode ser colocada, evitando assim que uma fração considerável da informação magnética seja perdida.Programa de Pós-graduação em FísicaFísicaMuniz, Roberto BecharaCPF:62431190822http://lattes.cnpq.br/5601107886236184Costa Junior, Antonio Tavares daCPF:55564376522http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4791621A5Guimarães, Filipe Souza Mendes2021-03-10T20:46:33Z2011-04-082021-03-10T20:46:33Z2011-03-01info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://app.uff.br/riuff/handle/1/19126porCC-BY-SAinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2021-03-10T20:46:33Zoai:app.uff.br:1/19126Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T11:01:02.265782Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Dinâmica de spins em nanoestruturas metálicas |
title |
Dinâmica de spins em nanoestruturas metálicas |
spellingShingle |
Dinâmica de spins em nanoestruturas metálicas Guimarães, Filipe Souza Mendes Magnetismo Nanotubos de carbono Nanoestrutura Spin CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA |
title_short |
Dinâmica de spins em nanoestruturas metálicas |
title_full |
Dinâmica de spins em nanoestruturas metálicas |
title_fullStr |
Dinâmica de spins em nanoestruturas metálicas |
title_full_unstemmed |
Dinâmica de spins em nanoestruturas metálicas |
title_sort |
Dinâmica de spins em nanoestruturas metálicas |
author |
Guimarães, Filipe Souza Mendes |
author_facet |
Guimarães, Filipe Souza Mendes |
author_role |
author |
dc.contributor.none.fl_str_mv |
Muniz, Roberto Bechara CPF:62431190822 http://lattes.cnpq.br/5601107886236184 Costa Junior, Antonio Tavares da CPF:55564376522 http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4791621A5 |
dc.contributor.author.fl_str_mv |
Guimarães, Filipe Souza Mendes |
dc.subject.por.fl_str_mv |
Magnetismo Nanotubos de carbono Nanoestrutura Spin CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA |
topic |
Magnetismo Nanotubos de carbono Nanoestrutura Spin CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA |
description |
In the present work, we investigate the spin pumping mechanism. In 2002, Tserkovnyak et al. proposed that a precessing magnetization of a magnetic unit coupled to a non-magnetic metal can transfer angular momentum to the conduction electrons, creating a spin flow that propagates across the non-magnetic metal [1]. This flux of angular momentum, or spin current, contributes to the damping of the precessing magnetization and propagates without a net charge current. The spin current can be used to excite a second magnetic unit, far away from the source, transporting information through conductors. To study this phenomenon, we developed a fully quantum-mechanical approach, based on linear response theory, to calculate the expected value of the spin current emitted by the precession of a magnetization of a magnetic unit in contact with a non-magnetic metal. We showed that this quantity is related to generalized dynamical transverse magnetic susceptibilities. In this work, we also detail the semi-classical theory developed by Tserkovnyal et al. [1], and compare it with our formulation. To illustrate this comparison quantitatively, we investigate some relatively simple systems. An excellent agreement between the two theories is revealed, considering the differences between the approaches: while our theory is completely based on quantum mechanics to obtain the spin current that emanates from a precessing magnetization, the semi-classical theory is based on scattering matrices and makes use of the adiabatic approximation to calculate the spin current pumped inside the contacts, away from the magnetic unit. Moreover, we calculate the spatial distribution of the spin currents, as a function of frequency and time, for magnetic impurities embedded in unidimensional systems, and we show that quantum interferences play a central role in this phenomenon. We also use our theory to study the propagation of spin currents in carbon-based nanostructures. We show that carbon nanotubes are able to carry information stored in a precessing magnetic moment for long distances with very little dispersion and with tunable degrees of attenuation. These systems, known to function as conduits for electrons and for phonons, are also efficient spin-current waveguides. Pulsed magnetic excitations are predicted to travel with the nanotube Fermi velocity and are able to induce similar excitations in remote locations [2]. In addition to the perturbation in carbon nanotubes, we also demonstrate that graphene can function as gate-controllable transistors for pumped spin currents. Furthermore, we propose as a proof of concept how these spin currents can be modulated by an electrostatic gate [3]. Because our proposal involves nano-sized systems that function with very high speeds and in the absence of any applied bias, it is potentially useful for the development of transistors capable of combining large processing speeds, enhanced integration and extremely low power consumption. As the spin current tends to travel omni-directionally, a large fraction of this information never reaches the probe and is lost. We propose, in analogy to optics systems, that a curved boundary between a gated and a non-gated region within graphene acts as an ideal lens for spin currents despite being entirely of non-magnetic nature. We show as a proof of concept that such lenses can be utilized to redirect the spin current that travels away from a source onto a focus region where a magnetic probe is located, saving a considerable fraction of the magnetic information that would be otherwise lost. |
publishDate |
2011 |
dc.date.none.fl_str_mv |
2011-04-08 2011-03-01 2021-03-10T20:46:33Z 2021-03-10T20:46:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://app.uff.br/riuff/handle/1/19126 |
url |
https://app.uff.br/riuff/handle/1/19126 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
CC-BY-SA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
CC-BY-SA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Programa de Pós-graduação em Física Física |
publisher.none.fl_str_mv |
Programa de Pós-graduação em Física Física |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF) instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
collection |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
riuff@id.uff.br |
_version_ |
1811823636337655808 |