Estudos de Novas Metodologias Sintéticas para Heterocíclicos Quinolônicos, Triazólicos e Síntese de Catalisadores Quirais

Detalhes bibliográficos
Autor(a) principal: Alves, Thatyana Rocha
Data de Publicação: 2004
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal Fluminense (RIUFF)
Texto Completo: https://app.uff.br/riuff/handle/1/20209
Resumo: In order to obtain quinolone nucleosides a new methodology based on construction of the heterocyclic ring at the carbohydrate moiety was devised. The carbohydrates: 1-methoxy-2,3-O-isopropylidene-α-D-ribofuranose (108), 1-methoxy-2,3-O-isopropylidene-5-O-methanesulfonyl-β-D-ribofuranose (109a) and 1-methoxy-2,3-O-isopropylidene-5-O-p-toluenesulfonyl-β-D-ribofuranose (109b) were prepared. The last two, the mesyl and tosyl derivatives, were submitted to nucleopilic substitution reaction with aniline or its corresponding anion, leading to 1-methoxy-2,3-O-isopropylidene-5-anilino-β-D-ribofuranose (110) in very low yield. Attempts to improve this yield by changing reaction conditions such as the polarity of the solvent or nitrogen eletronic density were unsuccessful. It seems that the elimination process is the most favorable under these conditions in the ribofuranoside ring.Also, the aldehyde 126 was prepared in order to produce 110 throught reductive amination reaction. Although, this synthesis has failed. Reaction of the amine 110 with diethyl ethoxymethylene malonate didn`t lead to ethyl N-phenyl-2,3-O-isopropilydene-ribofuranoside-α-carbethoxy-β-(anilino)acrylate (111), probably due to steric effects around the nitrogen. In the search for obtaining new quinolonic 2’,3’-didehydro-ribonucleosides (type II), several intermediates were prepared by using a methodology optimized in our group, which involves coupling previous sylilated 3-carbetoxy-4(1H)quinolones (X= F, 116a and X = Me, 116b) by reaction with N,O-bis(trimethylsilyl)trifluoracetamide (BSTFA), with 1-O-acetyl-2’,3’,5’,-tri-O-benzoyl-β-D-ribofuranose (23),under trimethylsilyltrifluormethanesulfonate (TMSO-Tf) catalysis. 3-Carbethoxy-1-(2’,3’,5’,-tri-O-benzoyl-β-D-ribofuranosyl)-4(1H)quinolone 117a-b were obtained in 83 and 85% yields, respectively. The acrylates 115a-b used to prepare the corresponding quinolones 116a-b were synthesized in 85 and 75% yields by a procedure described in the literature. The benzoyl protecting groups of the ribonucleosides 117a-b were removed by using methanolic sodium carbonate solution leading to the unprotected 3-carbomethoxy-1-β-D-ribofuranosyl-4(1H)quinolones 118a-b in 75% and 69% yields. These ribonucleosides were submitted to bromination and acetylation. Ribonucleoside 118b formed a 3:1 mixture of 2`-O-acety-3`-bromo and 3`-O-acety-2`-bromo regioisomeric derivatives. However, the same reaction with 118a produced the 2’,3’,5’-tri-O-acetylated derivative. Attempts to perform β-elimination reaction of the bromo-acetate ribonucleoside 118b to obtain the desired didehydro-nucleosides, using as reagent nickel deposited on charcoal surface were unsuccessful.Continuing our search for new heterocyclic nucleosides was investigated the preparation of triazolic derivatives (type III). The synthetic route devised started by preparing the aminocarbohydrates 129, 147, 150, 156 and 156, by a standard procedure described in the literature. These amino derivatives were reacted with diazomalonaldehyde (132) and diazoacetylacetone (133) affording 4-formyl-1,2,3-triazole-1-yl (130a e 148a) and 4-acetyl-5-methyl-1,2,3-triazole-1-yl (130b, 148b and 152a). The triazolic nucleoside 130a was tested against Herpes simplex virus type 1 (HSV-1) showing a good inhibition of the virus (86%) at the concentration 50 µM. Biological evaluation of this substance against HIV-1 virus is under study. All the nucleosides synthesized are also being tested against HSV-1 and HIV-1 virus. As an extension of our study on carbohydrate derivatives we undertook a search for new chiral Lewis acids based on stannylated carbohydrates. With this purpose we planned the preparation of the chiral Lewis acids 157a, 158a e 163a. Three reactions between tosylated carbohydrates 109b, 121 and 145 and Ph3SnLi were attempted. However, only carbohydrate 109b led to 1-methoxy-2,3-O-isopropylidene-5C-triphenylstannyl-α-D-ribofuranose (157a). In contrast, the reaction of Ph3SnLi with 121 produced 4,5-anhydro-1,2-O-isopropylidene-α-D-xylofuranose, rather than the stannylated substitution product. The carbohydrate 145 failed to produced any desired product. Thus it appears, superficially at least, that Ph3SnLi is acting as a nucleophille with 109b and as a base towards 121, eliminating p-MeC6H4SO3H. The lack of reactivity of 145 results from the steric hindrance by 3-sulfonate group difficulting the approach of the bulky tin-lithium reagent in an SN2-type reaction. Reactions of 157a with iodine, at both 1:1 and 1:2 mole ratios of 157a:I2, proceeded at ambient temperature to give the iodophenylstannylated products, 157b and 157c, in good yields. The chiral Lewis acids 157a-c were used in Diels-Alder reactions between methyl acrylate (122) and cyclopentadiene (123). The aduct 124 which was formed in the presence of 157c had its optical rotations measured. Chiral Lewis acid 157c was able to induce chirality leading to S configuration adduct as the major enantiomer (91% of enantiomeric excess). During the study on Diels-Alder reaction we had the opportunity to get a chiral catalyst, the fluoro-bis-oxazolidine 164 synthesized by Prof. Denis Sinou of Université Claude Bernard-Lyon I. We prepared in situ a copper complex of this compound and it was used in the Diels-Alder reaction between methyl acrylate (122) and cyclopentadiene (123). The result indicated that this catalyst was able to induce chirality in the cycloaduct favoring the S enantiomer (87% of enantiomeric excess).
id UFF-2_0c664c58effee1f992338f136b3c8ff4
oai_identifier_str oai:app.uff.br:1/20209
network_acronym_str UFF-2
network_name_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository_id_str 2120
spelling Estudos de Novas Metodologias Sintéticas para Heterocíclicos Quinolônicos, Triazólicos e Síntese de Catalisadores QuiraisNucleosídeosQuinolonasRibonucleosídeosCatalisadoresNucleosidesQuinolonesRibonucleosidesCatalystsCNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICAIn order to obtain quinolone nucleosides a new methodology based on construction of the heterocyclic ring at the carbohydrate moiety was devised. The carbohydrates: 1-methoxy-2,3-O-isopropylidene-α-D-ribofuranose (108), 1-methoxy-2,3-O-isopropylidene-5-O-methanesulfonyl-β-D-ribofuranose (109a) and 1-methoxy-2,3-O-isopropylidene-5-O-p-toluenesulfonyl-β-D-ribofuranose (109b) were prepared. The last two, the mesyl and tosyl derivatives, were submitted to nucleopilic substitution reaction with aniline or its corresponding anion, leading to 1-methoxy-2,3-O-isopropylidene-5-anilino-β-D-ribofuranose (110) in very low yield. Attempts to improve this yield by changing reaction conditions such as the polarity of the solvent or nitrogen eletronic density were unsuccessful. It seems that the elimination process is the most favorable under these conditions in the ribofuranoside ring.Also, the aldehyde 126 was prepared in order to produce 110 throught reductive amination reaction. Although, this synthesis has failed. Reaction of the amine 110 with diethyl ethoxymethylene malonate didn`t lead to ethyl N-phenyl-2,3-O-isopropilydene-ribofuranoside-α-carbethoxy-β-(anilino)acrylate (111), probably due to steric effects around the nitrogen. In the search for obtaining new quinolonic 2’,3’-didehydro-ribonucleosides (type II), several intermediates were prepared by using a methodology optimized in our group, which involves coupling previous sylilated 3-carbetoxy-4(1H)quinolones (X= F, 116a and X = Me, 116b) by reaction with N,O-bis(trimethylsilyl)trifluoracetamide (BSTFA), with 1-O-acetyl-2’,3’,5’,-tri-O-benzoyl-β-D-ribofuranose (23),under trimethylsilyltrifluormethanesulfonate (TMSO-Tf) catalysis. 3-Carbethoxy-1-(2’,3’,5’,-tri-O-benzoyl-β-D-ribofuranosyl)-4(1H)quinolone 117a-b were obtained in 83 and 85% yields, respectively. The acrylates 115a-b used to prepare the corresponding quinolones 116a-b were synthesized in 85 and 75% yields by a procedure described in the literature. The benzoyl protecting groups of the ribonucleosides 117a-b were removed by using methanolic sodium carbonate solution leading to the unprotected 3-carbomethoxy-1-β-D-ribofuranosyl-4(1H)quinolones 118a-b in 75% and 69% yields. These ribonucleosides were submitted to bromination and acetylation. Ribonucleoside 118b formed a 3:1 mixture of 2`-O-acety-3`-bromo and 3`-O-acety-2`-bromo regioisomeric derivatives. However, the same reaction with 118a produced the 2’,3’,5’-tri-O-acetylated derivative. Attempts to perform β-elimination reaction of the bromo-acetate ribonucleoside 118b to obtain the desired didehydro-nucleosides, using as reagent nickel deposited on charcoal surface were unsuccessful.Continuing our search for new heterocyclic nucleosides was investigated the preparation of triazolic derivatives (type III). The synthetic route devised started by preparing the aminocarbohydrates 129, 147, 150, 156 and 156, by a standard procedure described in the literature. These amino derivatives were reacted with diazomalonaldehyde (132) and diazoacetylacetone (133) affording 4-formyl-1,2,3-triazole-1-yl (130a e 148a) and 4-acetyl-5-methyl-1,2,3-triazole-1-yl (130b, 148b and 152a). The triazolic nucleoside 130a was tested against Herpes simplex virus type 1 (HSV-1) showing a good inhibition of the virus (86%) at the concentration 50 µM. Biological evaluation of this substance against HIV-1 virus is under study. All the nucleosides synthesized are also being tested against HSV-1 and HIV-1 virus. As an extension of our study on carbohydrate derivatives we undertook a search for new chiral Lewis acids based on stannylated carbohydrates. With this purpose we planned the preparation of the chiral Lewis acids 157a, 158a e 163a. Three reactions between tosylated carbohydrates 109b, 121 and 145 and Ph3SnLi were attempted. However, only carbohydrate 109b led to 1-methoxy-2,3-O-isopropylidene-5C-triphenylstannyl-α-D-ribofuranose (157a). In contrast, the reaction of Ph3SnLi with 121 produced 4,5-anhydro-1,2-O-isopropylidene-α-D-xylofuranose, rather than the stannylated substitution product. The carbohydrate 145 failed to produced any desired product. Thus it appears, superficially at least, that Ph3SnLi is acting as a nucleophille with 109b and as a base towards 121, eliminating p-MeC6H4SO3H. The lack of reactivity of 145 results from the steric hindrance by 3-sulfonate group difficulting the approach of the bulky tin-lithium reagent in an SN2-type reaction. Reactions of 157a with iodine, at both 1:1 and 1:2 mole ratios of 157a:I2, proceeded at ambient temperature to give the iodophenylstannylated products, 157b and 157c, in good yields. The chiral Lewis acids 157a-c were used in Diels-Alder reactions between methyl acrylate (122) and cyclopentadiene (123). The aduct 124 which was formed in the presence of 157c had its optical rotations measured. Chiral Lewis acid 157c was able to induce chirality leading to S configuration adduct as the major enantiomer (91% of enantiomeric excess). During the study on Diels-Alder reaction we had the opportunity to get a chiral catalyst, the fluoro-bis-oxazolidine 164 synthesized by Prof. Denis Sinou of Université Claude Bernard-Lyon I. We prepared in situ a copper complex of this compound and it was used in the Diels-Alder reaction between methyl acrylate (122) and cyclopentadiene (123). The result indicated that this catalyst was able to induce chirality in the cycloaduct favoring the S enantiomer (87% of enantiomeric excess).Neste trabalho foram estudadas, inicialmente, rotas sintéticas para obtenção de novos nucleosídeos reversos, 3-carbometoxi(etoxi)-1-β-D-ribofuranosil-4-(1H)quinolonas, do tipo I, através do método de construção da unidade heterocíclica a partir do carboidrato previamente funcionalizado. A primeira etapa consistiu na preparação do derivado 1-metoxi-2,3-O-isopropilideno-α-D-ribofuranose (108, 80%) e posterior reações de mesilação e tosilação da hidroxila remanescente do carbono C5, obtendo-se assim 1-metoxi-2,3-O-isopropilideno-5-O-metanossulfonil-β-D-ribofuranosídeo (109a, 65%) e 1-metoxi-2,3-O-isopropilideno-5-O-p-toluenossulfonil-β-D-ribofuranosídeo (109b, 78%). Estas substâncias foram então submetidas à reação de substituição nucleofilica com a anilina produzindo o intermediário 1-metoxi-2,3-O-isopropilideno-5-anilino-β-D-ribofuranosídeo (110, 7-27%). Durante a realização desta última etapa da seqüência reacional, foram testadas diferentes condições de reação uma vez que, em alguns casos, estava ocorrendo a formação do produto de eliminação 125. Como alternativa, buscou-se, ainda, a síntese do aldeído 126 para numa etapa posterior submetê-lo à reação de aminação redutiva, gerando a amina 110. Uma vez obtida esta amina 110, ela foi reagida com etoximetileno malonato de dietila sem, no entanto, ter levado ao produto de condensação desejado N-fenil-2,3-O-isopropilideno-ribofuranosídeo-α-carbetoxi-β-(anilino)acrilato de etila (111). Em continuidade aos estudos de desenvolvimento de novas metodologias para a síntese de nucleosídeos quinolônicos, vários intermediários sintéticos foram sintetizados visando a obtenção de 2’,3’-didesidrodidesoxinucleosídeos do tipo II. Assim, sintetizou-se os heterociclos 3-carbetoxi-4-(1H)quinolona 116a-b (84 e 83%) contendo respectivamente os substituintes flúor e metil na posição 6 partir de 115a-b (87 e 75%), segundo técnica descrita na literatura. Estes foram, a seguir, sililados com N,O-bis(trimetilsilil)trifluoracetamida (BSTFA) e então submetidos à reação de acoplamento com 1-O-acetil-2’,3’,5’,-tri-O-benzoil-β-D-ribofuranose (23), sob catálise do ácido de Lewis trimetilsililtrifluormetanossulfonato (TMSO-Tf), obtendo-se os respectivos nucleosídeos 3-carbetoxi-1-(2’,3’,5’,-tri-O-benzoil-β-D-ribofuranosil)-4(1H)quinolona 117a-b (83 e 88%). Por reação de desbenzoilação dos nucleosídeos 117, utilizando-se solução metanólica de carbonato de sódio, obteve-se os ribonucleosídeos correspondentes 3-carbometoxi-1-β-D-ribofuranosil-4(1H)quinolona 118a-b (77 e 69%). Estes foram submetidos à reação de metoxietilidenação, seguida de bromoacetilação, resultando, no caso de 118b em uma mistura de regioisômeros 2’(3’)-bromo-3’(2')-acetato na proporção de 3:1 (119b, 60%). Já a reação com 118a levou ao derivado 2’,3’,5’-tri-O-acetilado (119a, 70%). O produto 119b foi utilizado na reação de β-eliminação redutiva visando a obtenção do nucleosídeo 2’,3’-olefínico do tipo II, utilizando-se níquel no estado de oxidação zero, gerado in situ sobre carvão finamente dividido, sem, no entanto, ter levado ao produto desejado. Paralelamente a estes estudos buscou-se também a obtenção de nucleosídeos triazólicos reversos do tipo III, através de seqüências reacionais que envolveram inicialmente a síntese dos aminocarboidratos 129 (90%), 147 (85%), 150 (88%), 155 (75%) e 156 (79%), conforme metodologias descritas na literatura. Estes derivados foram então reagidos com substâncias diazodicarboniladas, previamente preparadas, como o diazomalonaldeído (132) e o diazoacetilacetona (133) levando à obtenção dos nucleosídeos triazólicos dos tipos 4-formil-1,2,3-triazol-1-il 130a (53%) e 148a (38%) e 4-acetil-5-metil-1,2,3-triazol-1-il 130b (44%), 148b (30%) e 152a (63%). O nucleosídeo 130a teve sua atividade biológica avaliada frente ao vírus causador da herpes simplex (HSV-1), apresentando um percentual de inibição deste vírus igual a 86% (concentração 50 µM). Encontra-se em avaliação sua atividade inibitória frente ao vírus HIV-1. Todos os demais nucleosídeos sintetizados também estão sendo testados contra os vírus HSV-1 e HIV-1. Como uma extensão dos nossos estudos envolvendo derivados de carboidratos realizou-se um trabalho visando a obtenção de novos ácidos de Lewis quirais baseados em carboidratos estanilados. Com este propósito, planejou-se a síntese dos ácidos de Lewis 157a, 158a e 163a. Efetuou-se reações entre os carboidratos tosilados 109b, 121 e 145 e Ph3SnLi (159). Entretanto, somente o carboidrato 109b levou à formação do 1-metoxi-2,3-O-SnLi com 121 levou à formação do 4,5-anidro-1,2-O-isopropilideno-α-D-xilofuranose 161. Já a substância 145 não se mostrou reativa. Reações de 157a com iodo, nas razões molares 1:1 e 1:2 de 157a:I, procederam à temperatura ambiente gerando os produtos iodofenilestanilados, 157b e 157c, em rendimentos satisfatórios (75 e 68%). isopropilideno-5(trifenilestanil)-α-D-ribofuranose (157a). Em contraste, a reação de Ph32 os ácidos de Lewis quirais 157a-c foram utilizados nas reações de Diels-Alder entre o acrilato de metila (122) e o ciclopentadieno(123). O aduto 124, formado na presença de 157c, teve sua rotação ótica medida. O ácido de Lewis quiral 157c foi capaz de induzir quiralidade levando ao aduto com configuração S, como o enantiomêro majoritário (91% de excesso enantiomérico). Durante este estudo em reações de Diels-Alder, surgiu a oportunidade de testar um catalisador quiral, a flúor-bis-oxazolina 164, sintetizada pelo Prof. Denis Sinou da Universidade Claude Bernard-Lyon I. Assim, preparou-se in situ um complexo de cobre desta substância que foi testado na reação de Diels-Alder entre 122 e 123. O resultado das medições de rotação ótica indicou que este catalisador foi capaz de induzir quiralidade no cicloaduto, favorecendo o enantiômero S (87% de excesso enantiomérico).Universidade Federal FluminensePrograma de Pós-graduação em Química OrgânicaQuímica OrgânicaBRUFFFerreira, Vítor FranciscoCPF:34985220787http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4783135Y6Souza, Maria Cecília Bastos Vieira deCPF:44470134791http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4783203D6Antunes, Octávio Augusto CevaCPF:34643854765http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4781815H5Donnici, Claudio LuisCPF:90876543211http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4790125Z7Cunha, Anna CláudiaCPF:91618983768http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4728588U6Wardell, Solange Maria Silva VelosoCPF:87968594849Alves, Thatyana Rocha2021-03-10T20:49:36Z2005-02-182021-03-10T20:49:36Z2004-03-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://app.uff.br/riuff/handle/1/20209porCC-BY-SAinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2021-03-10T20:49:36Zoai:app.uff.br:1/20209Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T11:19:20.056959Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Estudos de Novas Metodologias Sintéticas para Heterocíclicos Quinolônicos, Triazólicos e Síntese de Catalisadores Quirais
title Estudos de Novas Metodologias Sintéticas para Heterocíclicos Quinolônicos, Triazólicos e Síntese de Catalisadores Quirais
spellingShingle Estudos de Novas Metodologias Sintéticas para Heterocíclicos Quinolônicos, Triazólicos e Síntese de Catalisadores Quirais
Alves, Thatyana Rocha
Nucleosídeos
Quinolonas
Ribonucleosídeos
Catalisadores
Nucleosides
Quinolones
Ribonucleosides
Catalysts
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA
title_short Estudos de Novas Metodologias Sintéticas para Heterocíclicos Quinolônicos, Triazólicos e Síntese de Catalisadores Quirais
title_full Estudos de Novas Metodologias Sintéticas para Heterocíclicos Quinolônicos, Triazólicos e Síntese de Catalisadores Quirais
title_fullStr Estudos de Novas Metodologias Sintéticas para Heterocíclicos Quinolônicos, Triazólicos e Síntese de Catalisadores Quirais
title_full_unstemmed Estudos de Novas Metodologias Sintéticas para Heterocíclicos Quinolônicos, Triazólicos e Síntese de Catalisadores Quirais
title_sort Estudos de Novas Metodologias Sintéticas para Heterocíclicos Quinolônicos, Triazólicos e Síntese de Catalisadores Quirais
author Alves, Thatyana Rocha
author_facet Alves, Thatyana Rocha
author_role author
dc.contributor.none.fl_str_mv Ferreira, Vítor Francisco
CPF:34985220787
http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4783135Y6
Souza, Maria Cecília Bastos Vieira de
CPF:44470134791
http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4783203D6
Antunes, Octávio Augusto Ceva
CPF:34643854765
http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4781815H5
Donnici, Claudio Luis
CPF:90876543211
http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4790125Z7
Cunha, Anna Cláudia
CPF:91618983768
http://genos.cnpq.br:12010/dwlattes/owa/prc_imp_cv_int?f_cod=K4728588U6
Wardell, Solange Maria Silva Veloso
CPF:87968594849
dc.contributor.author.fl_str_mv Alves, Thatyana Rocha
dc.subject.por.fl_str_mv Nucleosídeos
Quinolonas
Ribonucleosídeos
Catalisadores
Nucleosides
Quinolones
Ribonucleosides
Catalysts
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA
topic Nucleosídeos
Quinolonas
Ribonucleosídeos
Catalisadores
Nucleosides
Quinolones
Ribonucleosides
Catalysts
CNPQ::CIENCIAS EXATAS E DA TERRA::QUIMICA::QUIMICA ORGANICA
description In order to obtain quinolone nucleosides a new methodology based on construction of the heterocyclic ring at the carbohydrate moiety was devised. The carbohydrates: 1-methoxy-2,3-O-isopropylidene-α-D-ribofuranose (108), 1-methoxy-2,3-O-isopropylidene-5-O-methanesulfonyl-β-D-ribofuranose (109a) and 1-methoxy-2,3-O-isopropylidene-5-O-p-toluenesulfonyl-β-D-ribofuranose (109b) were prepared. The last two, the mesyl and tosyl derivatives, were submitted to nucleopilic substitution reaction with aniline or its corresponding anion, leading to 1-methoxy-2,3-O-isopropylidene-5-anilino-β-D-ribofuranose (110) in very low yield. Attempts to improve this yield by changing reaction conditions such as the polarity of the solvent or nitrogen eletronic density were unsuccessful. It seems that the elimination process is the most favorable under these conditions in the ribofuranoside ring.Also, the aldehyde 126 was prepared in order to produce 110 throught reductive amination reaction. Although, this synthesis has failed. Reaction of the amine 110 with diethyl ethoxymethylene malonate didn`t lead to ethyl N-phenyl-2,3-O-isopropilydene-ribofuranoside-α-carbethoxy-β-(anilino)acrylate (111), probably due to steric effects around the nitrogen. In the search for obtaining new quinolonic 2’,3’-didehydro-ribonucleosides (type II), several intermediates were prepared by using a methodology optimized in our group, which involves coupling previous sylilated 3-carbetoxy-4(1H)quinolones (X= F, 116a and X = Me, 116b) by reaction with N,O-bis(trimethylsilyl)trifluoracetamide (BSTFA), with 1-O-acetyl-2’,3’,5’,-tri-O-benzoyl-β-D-ribofuranose (23),under trimethylsilyltrifluormethanesulfonate (TMSO-Tf) catalysis. 3-Carbethoxy-1-(2’,3’,5’,-tri-O-benzoyl-β-D-ribofuranosyl)-4(1H)quinolone 117a-b were obtained in 83 and 85% yields, respectively. The acrylates 115a-b used to prepare the corresponding quinolones 116a-b were synthesized in 85 and 75% yields by a procedure described in the literature. The benzoyl protecting groups of the ribonucleosides 117a-b were removed by using methanolic sodium carbonate solution leading to the unprotected 3-carbomethoxy-1-β-D-ribofuranosyl-4(1H)quinolones 118a-b in 75% and 69% yields. These ribonucleosides were submitted to bromination and acetylation. Ribonucleoside 118b formed a 3:1 mixture of 2`-O-acety-3`-bromo and 3`-O-acety-2`-bromo regioisomeric derivatives. However, the same reaction with 118a produced the 2’,3’,5’-tri-O-acetylated derivative. Attempts to perform β-elimination reaction of the bromo-acetate ribonucleoside 118b to obtain the desired didehydro-nucleosides, using as reagent nickel deposited on charcoal surface were unsuccessful.Continuing our search for new heterocyclic nucleosides was investigated the preparation of triazolic derivatives (type III). The synthetic route devised started by preparing the aminocarbohydrates 129, 147, 150, 156 and 156, by a standard procedure described in the literature. These amino derivatives were reacted with diazomalonaldehyde (132) and diazoacetylacetone (133) affording 4-formyl-1,2,3-triazole-1-yl (130a e 148a) and 4-acetyl-5-methyl-1,2,3-triazole-1-yl (130b, 148b and 152a). The triazolic nucleoside 130a was tested against Herpes simplex virus type 1 (HSV-1) showing a good inhibition of the virus (86%) at the concentration 50 µM. Biological evaluation of this substance against HIV-1 virus is under study. All the nucleosides synthesized are also being tested against HSV-1 and HIV-1 virus. As an extension of our study on carbohydrate derivatives we undertook a search for new chiral Lewis acids based on stannylated carbohydrates. With this purpose we planned the preparation of the chiral Lewis acids 157a, 158a e 163a. Three reactions between tosylated carbohydrates 109b, 121 and 145 and Ph3SnLi were attempted. However, only carbohydrate 109b led to 1-methoxy-2,3-O-isopropylidene-5C-triphenylstannyl-α-D-ribofuranose (157a). In contrast, the reaction of Ph3SnLi with 121 produced 4,5-anhydro-1,2-O-isopropylidene-α-D-xylofuranose, rather than the stannylated substitution product. The carbohydrate 145 failed to produced any desired product. Thus it appears, superficially at least, that Ph3SnLi is acting as a nucleophille with 109b and as a base towards 121, eliminating p-MeC6H4SO3H. The lack of reactivity of 145 results from the steric hindrance by 3-sulfonate group difficulting the approach of the bulky tin-lithium reagent in an SN2-type reaction. Reactions of 157a with iodine, at both 1:1 and 1:2 mole ratios of 157a:I2, proceeded at ambient temperature to give the iodophenylstannylated products, 157b and 157c, in good yields. The chiral Lewis acids 157a-c were used in Diels-Alder reactions between methyl acrylate (122) and cyclopentadiene (123). The aduct 124 which was formed in the presence of 157c had its optical rotations measured. Chiral Lewis acid 157c was able to induce chirality leading to S configuration adduct as the major enantiomer (91% of enantiomeric excess). During the study on Diels-Alder reaction we had the opportunity to get a chiral catalyst, the fluoro-bis-oxazolidine 164 synthesized by Prof. Denis Sinou of Université Claude Bernard-Lyon I. We prepared in situ a copper complex of this compound and it was used in the Diels-Alder reaction between methyl acrylate (122) and cyclopentadiene (123). The result indicated that this catalyst was able to induce chirality in the cycloaduct favoring the S enantiomer (87% of enantiomeric excess).
publishDate 2004
dc.date.none.fl_str_mv 2004-03-29
2005-02-18
2021-03-10T20:49:36Z
2021-03-10T20:49:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://app.uff.br/riuff/handle/1/20209
url https://app.uff.br/riuff/handle/1/20209
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv CC-BY-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv CC-BY-SA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Fluminense
Programa de Pós-graduação em Química Orgânica
Química Orgânica
BR
UFF
publisher.none.fl_str_mv Universidade Federal Fluminense
Programa de Pós-graduação em Química Orgânica
Química Orgânica
BR
UFF
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
collection Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv riuff@id.uff.br
_version_ 1811823722990927872