The computational power of noninteracting particles

Detalhes bibliográficos
Autor(a) principal: Brod, Daniel Jost
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal Fluminense (RIUFF)
Texto Completo: https://app.uff.br/riuff/handle/1/3010
Resumo: Podemos estudar o poder computacional de modelos restritos de computação para ajudar a esclarecer a natureza do speedup computacional. Do ponto de vista teórico, pode ajudar a determinar que recursos são necessários e/ou su cientes para computação quântica universal. Essa questão também é de interesse no caso de implementações experimentais em que haja restrições nas operações ou recursos disponíveis. Esta tese dedica-se ao estudo de dois modelos restritos de computação quântica, provenientes da descrição da evolução de partículas idênticas não interagentes em Mecânica Quântica. A dinâmica de férmions não interagentes corresponde a um conjunto restrito de portas de dois qubits conhecidas como matchgates. Circuitos de matchgates são simuláveis classicamente se os qubits estão organizados em um grafo linear e as portas só atuam entre primeiros vizinhos, e universais para computação quântica se as portas podem atuar entre qubits distantes ou, de forma equivalente, se a porta SWAP está disponível.Nesta tese, eu generalizo esses resultados de duas formas. Primeiro, mostro que a SWAP pertence a uma família contínua de portas capazes de tornar matchgates universais. Mais especi camente, mostro que qualquer porta de dois qubits que preserve a paridade (e não seja um matchgate) pode ser adicionada ao conjunto completo de matchgates para se obter computação universal e, além disso, dou uma interpretação desse fato em termos de invariantes locais de portas de dois qubits. Em seguida, estudo o poder computacional de matchgates entre qubits em grafos de conectividade arbitrários. Mostro que matchgates podem realizar computação universal em qualquer grafo que não seja um ciclo ou um caminho, e que eles são simuláveis classicamente se o grafo é um ciclo. Essa dicotomia persiste se restringimos o conjunto somente à interação XY, um subconjunto de matchgates diretamente relacionado a diversas implementações de computação quântica. Bósons não interagentes (e.g. ótica linear) dão origem a um modelo, proposto recentemente, conhecido como amostragem bosônica (BosonSampling). A tarefa de amostragem bosônica consiste em: (i) preparar um estado de Fock de n fótons, (ii) evoluí-lo de acordo com um interferômetro linear de m modos e (iii) medir as saídas do interferômetro na base de Fock. Pode-se mostrar que, partindo de algumas conjecturas razoáveis relativas a classes de complexidade, não é possível produzir, de forma e ciente em um computador clássico, uma amostra da distribuição resultante desse sistema, nem de forma aproximada. Nesta tese mostro que, sob conjecturas semelhantes, a versão exata da amostragem bosônica é difícil mesmo se o circuito ótico tem profundidade constante. Também descrevo alguns experimentos, realizados em colaboração com grupos experimentais de Roma e Milão, em que foi observada a interferência de três fótons em chips fotônicos de vários tamanhos. Esses experimentos estão entre as primeiras implementações de amostragem bosônica nesse regime. Os experimentos também evidenciam o efeito de agrupamento (bunching) bosônico em interferômetros multimodo e a aplicação de protocolos de validação desses dispositivos. Esta tese contém descrições detalhadas de análises numéricas realizadas sobre os dados experimentais, que foram omitidas das respectivas publicações.
id UFF-2_0f56d64a0cc271ba1cc0195f8edcd0cf
oai_identifier_str oai:app.uff.br:1/3010
network_acronym_str UFF-2
network_name_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository_id_str 2120
spelling The computational power of noninteracting particlesComputação quânticaFérmions livresBósons livresAmostragem bosônicaMatchgatesPodemos estudar o poder computacional de modelos restritos de computação para ajudar a esclarecer a natureza do speedup computacional. Do ponto de vista teórico, pode ajudar a determinar que recursos são necessários e/ou su cientes para computação quântica universal. Essa questão também é de interesse no caso de implementações experimentais em que haja restrições nas operações ou recursos disponíveis. Esta tese dedica-se ao estudo de dois modelos restritos de computação quântica, provenientes da descrição da evolução de partículas idênticas não interagentes em Mecânica Quântica. A dinâmica de férmions não interagentes corresponde a um conjunto restrito de portas de dois qubits conhecidas como matchgates. Circuitos de matchgates são simuláveis classicamente se os qubits estão organizados em um grafo linear e as portas só atuam entre primeiros vizinhos, e universais para computação quântica se as portas podem atuar entre qubits distantes ou, de forma equivalente, se a porta SWAP está disponível.Nesta tese, eu generalizo esses resultados de duas formas. Primeiro, mostro que a SWAP pertence a uma família contínua de portas capazes de tornar matchgates universais. Mais especi camente, mostro que qualquer porta de dois qubits que preserve a paridade (e não seja um matchgate) pode ser adicionada ao conjunto completo de matchgates para se obter computação universal e, além disso, dou uma interpretação desse fato em termos de invariantes locais de portas de dois qubits. Em seguida, estudo o poder computacional de matchgates entre qubits em grafos de conectividade arbitrários. Mostro que matchgates podem realizar computação universal em qualquer grafo que não seja um ciclo ou um caminho, e que eles são simuláveis classicamente se o grafo é um ciclo. Essa dicotomia persiste se restringimos o conjunto somente à interação XY, um subconjunto de matchgates diretamente relacionado a diversas implementações de computação quântica. Bósons não interagentes (e.g. ótica linear) dão origem a um modelo, proposto recentemente, conhecido como amostragem bosônica (BosonSampling). A tarefa de amostragem bosônica consiste em: (i) preparar um estado de Fock de n fótons, (ii) evoluí-lo de acordo com um interferômetro linear de m modos e (iii) medir as saídas do interferômetro na base de Fock. Pode-se mostrar que, partindo de algumas conjecturas razoáveis relativas a classes de complexidade, não é possível produzir, de forma e ciente em um computador clássico, uma amostra da distribuição resultante desse sistema, nem de forma aproximada. Nesta tese mostro que, sob conjecturas semelhantes, a versão exata da amostragem bosônica é difícil mesmo se o circuito ótico tem profundidade constante. Também descrevo alguns experimentos, realizados em colaboração com grupos experimentais de Roma e Milão, em que foi observada a interferência de três fótons em chips fotônicos de vários tamanhos. Esses experimentos estão entre as primeiras implementações de amostragem bosônica nesse regime. Os experimentos também evidenciam o efeito de agrupamento (bunching) bosônico em interferômetros multimodo e a aplicação de protocolos de validação desses dispositivos. Esta tese contém descrições detalhadas de análises numéricas realizadas sobre os dados experimentais, que foram omitidas das respectivas publicações.Conselho Nacional de Desenvolvimento Científico e TecnológicoInstituto Nacional de Ciência e Tecnologia de Informação QuânticaERC-Starting Grant 3D-QUESTWe can study the computational power of restricted models of computation in order to shed light on the nature of quantum computational speedup. From a theoretical perspective, it can help determine what resources are necessary and/or sufficient for universal quantum computation. This issue is also relevant in experimental settings where the available operations or resources may be restricted. In this thesis, I study two different restricted models of quantum computation that stem from the behavior of free indistinguishable quantum-mechanical particles. The dynamics of noninteracting fermions correspond to a restricted set of two-qubit gates known as matchgates. Matchgates are known to be classically simulable when acting on nearest-neighbor qubits on a path, but are universal for quantum computation when the gates can also act on more distant qubits or, equivalently, when SWAP gates are available. Here, I generalize these known results in two ways. First, I show that SWAP is only one in a large family of gates that can uplift matchgates to full quantum universality. More speci cally, I show that the set of all matchgates plus any nonmatchgate parity-preserving two-qubit gate is universal, and I give an interpretation of this fact in terms of local invariants of two-qubit gates. Second, I investigate the power of two-qubit matchgates between qubits in an arbitrary connectivity graph, showing that they are universal on any connected graph other than a path or a cycle, and that they are classically simulable on a cycle. This same dichotomy holds for the XY interaction, a proper subset of matchgates that arises naturally in several implementations of quantum computing. Noninteracting bosons (e.g. linear optics) give rise to a recently proposed restricted model known as BosonSampling. The BosonSampling task consists of (i) preparing an initial Fock state of n identical photons, (ii) interfering these photons in an m-mode linear interferometer, and (iii) measuring the resulting output distribution in the Fock basis. It can be shown that sampling approximately from the resulting distribution should be classically hard, under reasonable complexity assumptions. Here I show, under similar assumptions, that exact BosonSampling remains hard even if the linear-optical circuit has constant depth. I also report several experiments performed in collaboration with Quantum Optics groups in Rome and Milan, where three-photon interference was observed in integrated interferometers of various sizes, providing some of the rst implementations of BosonSampling in this regime. The experiments also focus on the bosonic bunching behavior in multimode interferometers, and on the validation of BosonSampling devices. This thesis also contains detailed descriptions of the numerical analyses done on the experimental data, and which were omitted from the corresponding publications.NiteróiGalvão, Ernesto FagundesBrod, Daniel Jost2017-03-07T17:06:34Z2017-03-07T17:06:34Z2014info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://app.uff.br/riuff/handle/1/3010Aluno de doutoradoCC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2020-07-27T17:11:49Zoai:app.uff.br:1/3010Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T10:55:11.985378Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv The computational power of noninteracting particles
title The computational power of noninteracting particles
spellingShingle The computational power of noninteracting particles
Brod, Daniel Jost
Computação quântica
Férmions livres
Bósons livres
Amostragem bosônica
Matchgates
title_short The computational power of noninteracting particles
title_full The computational power of noninteracting particles
title_fullStr The computational power of noninteracting particles
title_full_unstemmed The computational power of noninteracting particles
title_sort The computational power of noninteracting particles
author Brod, Daniel Jost
author_facet Brod, Daniel Jost
author_role author
dc.contributor.none.fl_str_mv Galvão, Ernesto Fagundes
dc.contributor.author.fl_str_mv Brod, Daniel Jost
dc.subject.por.fl_str_mv Computação quântica
Férmions livres
Bósons livres
Amostragem bosônica
Matchgates
topic Computação quântica
Férmions livres
Bósons livres
Amostragem bosônica
Matchgates
description Podemos estudar o poder computacional de modelos restritos de computação para ajudar a esclarecer a natureza do speedup computacional. Do ponto de vista teórico, pode ajudar a determinar que recursos são necessários e/ou su cientes para computação quântica universal. Essa questão também é de interesse no caso de implementações experimentais em que haja restrições nas operações ou recursos disponíveis. Esta tese dedica-se ao estudo de dois modelos restritos de computação quântica, provenientes da descrição da evolução de partículas idênticas não interagentes em Mecânica Quântica. A dinâmica de férmions não interagentes corresponde a um conjunto restrito de portas de dois qubits conhecidas como matchgates. Circuitos de matchgates são simuláveis classicamente se os qubits estão organizados em um grafo linear e as portas só atuam entre primeiros vizinhos, e universais para computação quântica se as portas podem atuar entre qubits distantes ou, de forma equivalente, se a porta SWAP está disponível.Nesta tese, eu generalizo esses resultados de duas formas. Primeiro, mostro que a SWAP pertence a uma família contínua de portas capazes de tornar matchgates universais. Mais especi camente, mostro que qualquer porta de dois qubits que preserve a paridade (e não seja um matchgate) pode ser adicionada ao conjunto completo de matchgates para se obter computação universal e, além disso, dou uma interpretação desse fato em termos de invariantes locais de portas de dois qubits. Em seguida, estudo o poder computacional de matchgates entre qubits em grafos de conectividade arbitrários. Mostro que matchgates podem realizar computação universal em qualquer grafo que não seja um ciclo ou um caminho, e que eles são simuláveis classicamente se o grafo é um ciclo. Essa dicotomia persiste se restringimos o conjunto somente à interação XY, um subconjunto de matchgates diretamente relacionado a diversas implementações de computação quântica. Bósons não interagentes (e.g. ótica linear) dão origem a um modelo, proposto recentemente, conhecido como amostragem bosônica (BosonSampling). A tarefa de amostragem bosônica consiste em: (i) preparar um estado de Fock de n fótons, (ii) evoluí-lo de acordo com um interferômetro linear de m modos e (iii) medir as saídas do interferômetro na base de Fock. Pode-se mostrar que, partindo de algumas conjecturas razoáveis relativas a classes de complexidade, não é possível produzir, de forma e ciente em um computador clássico, uma amostra da distribuição resultante desse sistema, nem de forma aproximada. Nesta tese mostro que, sob conjecturas semelhantes, a versão exata da amostragem bosônica é difícil mesmo se o circuito ótico tem profundidade constante. Também descrevo alguns experimentos, realizados em colaboração com grupos experimentais de Roma e Milão, em que foi observada a interferência de três fótons em chips fotônicos de vários tamanhos. Esses experimentos estão entre as primeiras implementações de amostragem bosônica nesse regime. Os experimentos também evidenciam o efeito de agrupamento (bunching) bosônico em interferômetros multimodo e a aplicação de protocolos de validação desses dispositivos. Esta tese contém descrições detalhadas de análises numéricas realizadas sobre os dados experimentais, que foram omitidas das respectivas publicações.
publishDate 2014
dc.date.none.fl_str_mv 2014
2017-03-07T17:06:34Z
2017-03-07T17:06:34Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://app.uff.br/riuff/handle/1/3010
Aluno de doutorado
url https://app.uff.br/riuff/handle/1/3010
identifier_str_mv Aluno de doutorado
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv CC-BY-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv CC-BY-SA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Niterói
publisher.none.fl_str_mv Niterói
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
collection Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv riuff@id.uff.br
_version_ 1811823608167661568