Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia

Detalhes bibliográficos
Autor(a) principal: Luz, Lucas Primo
Data de Publicação: 2019
Tipo de documento: Trabalho de conclusão de curso
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal Fluminense (RIUFF)
Texto Completo: https://app.uff.br/riuff/handle/1/13938
Resumo: O consumo de energia elétrica no Brasil vem aumentando gradativamente durante os anos. Este aumento no consumo se justifica devido à urbanização, ao aumento populacional e também devido aos avanços tecnológicos nas casas, comércios e indústrias. Para atender esta demanda, se faz necessário o desenvolvimento de novas técnicas capazes de prever com uma melhor acurácia o consumo de energia elétrica. Singular Spectrum Analysis (SSA) é um método estatístico que pode, dentre outras coisas, filtrar séries temporais eliminando sua componente ruidosa e melhorando a acurácia da previsão. Este projeto propõe fazer a modelagem de Holt-Winters e Box & Jenkins na série de consumo de energia elétrica no Brasil. Além disso, fazer uma filtragem SSA nessa mesma série removendo os ruídos e utilizar os modelos de Holt-Winters e Box & Jenkins para fazer a modelagem com a série filtrada pela metodologia de Análise Gráfica dos Autovetores. Após as modelagens, foram utilizadas as estatísticas de aderência para verificar a capacidade preditiva de cada modelo. As estatísticas de aderência utilizadas foram o Coeficiente de Determinação (R2), Erro Médio Percentual Absoluto (MAPE), Erro Médio Absoluto (MAE), Raiz Quadrada do Erro Quadrático Médio (RMSE) e Critério de Informação Bayesiana (BIC). Com as análises realizadas, foi verificado que os modelos de Box & Jenkins obteve os melhores resultados quanto as estatísticas de aderência tanto na série original quanto na série filtrada. Ao aplicar a filtragem SSA tem-se um ganho preditivo em todos os casos para a previsão de consumo de energia
id UFF-2_1ad273599331a38d2c4d826590a9b8bf
oai_identifier_str oai:app.uff.br:1/13938
network_acronym_str UFF-2
network_name_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository_id_str 2120
spelling Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energiaSéries temporaisSingular spectrum analysisHolt-WintersBox & JenkinsAnálise gráfica dos autovetoresConsumo de energia elétricaSérie temporalDemanda de energiaO consumo de energia elétrica no Brasil vem aumentando gradativamente durante os anos. Este aumento no consumo se justifica devido à urbanização, ao aumento populacional e também devido aos avanços tecnológicos nas casas, comércios e indústrias. Para atender esta demanda, se faz necessário o desenvolvimento de novas técnicas capazes de prever com uma melhor acurácia o consumo de energia elétrica. Singular Spectrum Analysis (SSA) é um método estatístico que pode, dentre outras coisas, filtrar séries temporais eliminando sua componente ruidosa e melhorando a acurácia da previsão. Este projeto propõe fazer a modelagem de Holt-Winters e Box & Jenkins na série de consumo de energia elétrica no Brasil. Além disso, fazer uma filtragem SSA nessa mesma série removendo os ruídos e utilizar os modelos de Holt-Winters e Box & Jenkins para fazer a modelagem com a série filtrada pela metodologia de Análise Gráfica dos Autovetores. Após as modelagens, foram utilizadas as estatísticas de aderência para verificar a capacidade preditiva de cada modelo. As estatísticas de aderência utilizadas foram o Coeficiente de Determinação (R2), Erro Médio Percentual Absoluto (MAPE), Erro Médio Absoluto (MAE), Raiz Quadrada do Erro Quadrático Médio (RMSE) e Critério de Informação Bayesiana (BIC). Com as análises realizadas, foi verificado que os modelos de Box & Jenkins obteve os melhores resultados quanto as estatísticas de aderência tanto na série original quanto na série filtrada. Ao aplicar a filtragem SSA tem-se um ganho preditivo em todos os casos para a previsão de consumo de energiaNenhumMenezes, Moisés Lima deJacobson, Ludmilla da Silva VianaSantos, Wilson Calmon Almeida dosLuz, Lucas Primo2020-06-17T13:25:23Z2020-06-17T13:25:23Z2019info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisapplication/pdfLUZ, Lucas Primo. Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia. 2019. 59 f. Trabalho de Conclusão de Curso (Graduação de Estatística) - Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2019.https://app.uff.br/riuff/handle/1/13938http://creativecommons.org/licenses/by-nc-nd/3.0/br/CC-BY-SAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2021-09-20T20:16:28Zoai:app.uff.br:1/13938Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T10:57:09.100826Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia
title Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia
spellingShingle Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia
Luz, Lucas Primo
Séries temporais
Singular spectrum analysis
Holt-Winters
Box & Jenkins
Análise gráfica dos autovetores
Consumo de energia elétrica
Série temporal
Demanda de energia
title_short Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia
title_full Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia
title_fullStr Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia
title_full_unstemmed Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia
title_sort Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia
author Luz, Lucas Primo
author_facet Luz, Lucas Primo
author_role author
dc.contributor.none.fl_str_mv Menezes, Moisés Lima de
Jacobson, Ludmilla da Silva Viana
Santos, Wilson Calmon Almeida dos
dc.contributor.author.fl_str_mv Luz, Lucas Primo
dc.subject.por.fl_str_mv Séries temporais
Singular spectrum analysis
Holt-Winters
Box & Jenkins
Análise gráfica dos autovetores
Consumo de energia elétrica
Série temporal
Demanda de energia
topic Séries temporais
Singular spectrum analysis
Holt-Winters
Box & Jenkins
Análise gráfica dos autovetores
Consumo de energia elétrica
Série temporal
Demanda de energia
description O consumo de energia elétrica no Brasil vem aumentando gradativamente durante os anos. Este aumento no consumo se justifica devido à urbanização, ao aumento populacional e também devido aos avanços tecnológicos nas casas, comércios e indústrias. Para atender esta demanda, se faz necessário o desenvolvimento de novas técnicas capazes de prever com uma melhor acurácia o consumo de energia elétrica. Singular Spectrum Analysis (SSA) é um método estatístico que pode, dentre outras coisas, filtrar séries temporais eliminando sua componente ruidosa e melhorando a acurácia da previsão. Este projeto propõe fazer a modelagem de Holt-Winters e Box & Jenkins na série de consumo de energia elétrica no Brasil. Além disso, fazer uma filtragem SSA nessa mesma série removendo os ruídos e utilizar os modelos de Holt-Winters e Box & Jenkins para fazer a modelagem com a série filtrada pela metodologia de Análise Gráfica dos Autovetores. Após as modelagens, foram utilizadas as estatísticas de aderência para verificar a capacidade preditiva de cada modelo. As estatísticas de aderência utilizadas foram o Coeficiente de Determinação (R2), Erro Médio Percentual Absoluto (MAPE), Erro Médio Absoluto (MAE), Raiz Quadrada do Erro Quadrático Médio (RMSE) e Critério de Informação Bayesiana (BIC). Com as análises realizadas, foi verificado que os modelos de Box & Jenkins obteve os melhores resultados quanto as estatísticas de aderência tanto na série original quanto na série filtrada. Ao aplicar a filtragem SSA tem-se um ganho preditivo em todos os casos para a previsão de consumo de energia
publishDate 2019
dc.date.none.fl_str_mv 2019
2020-06-17T13:25:23Z
2020-06-17T13:25:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/bachelorThesis
format bachelorThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LUZ, Lucas Primo. Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia. 2019. 59 f. Trabalho de Conclusão de Curso (Graduação de Estatística) - Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2019.
https://app.uff.br/riuff/handle/1/13938
identifier_str_mv LUZ, Lucas Primo. Avaliação da capacidade preditiva dos modelos das classes ARIMA e de Amortecimento Exponencial sob diferentes aspectos da abordagem SSA na modelagem e previsão de consumo de energia. 2019. 59 f. Trabalho de Conclusão de Curso (Graduação de Estatística) - Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2019.
url https://app.uff.br/riuff/handle/1/13938
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
CC-BY-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
CC-BY-SA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
collection Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv riuff@id.uff.br
_version_ 1811823617234698240