Análise comparativa de algoritmos adaptativos que usam estatísticas de alta ordem para equalização de canais esparsos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
Texto Completo: | https://app.uff.br/riuff/handle/1/3934 |
Resumo: | Em um sistema de comunica c~oes, os sinais s~ao transmitidos atrav es de canais de comunica c~ao que, idealmente, deveriam transportar os dados de maneira a n~ao causar distor c~ao alguma. Por em, em sistemas reais, existem limita c~oes que interferem neste processo causando degrada c~ao nas informa c~oes transmitidas, podendo comprometer sua recep c~ao. Tais limita c~oes ocorrem devido a presen ca de ru do aditivo, e principalmente por interfer^encia intersimb olica, esta caracterizada pela sobreposi c~ao de s mbolos gerados por uma mesma fonte transmissora. A equaliza c~ao de canal e uma das t ecnicas existentes que reduzem os efeitos da interfer^encia intersimb olica, dando maior con abilidade e robustez aos sistemas de comunica c~oes. Dentre as t ecnicas utilizadas para equaliza c~ao de canal, o uso de algoritmo adaptativos vem sendo amplamente utilizados devido as suas propriedades de se auto-ajustarem as varia c~oes que ocorrem ao longo do tempo. Este trabalho tem como objetivo veri car o comportamento de diferentes tipos de algoritmos adaptativos cegos ou semicegos, assim denominados por n~ao utilizarem sequ^encias de treinamento, aplicados a equaliza c~ao de canais esparsos. Canais esparsos s~ao encontrados em diversos sistemas de comunica c~oes como, por exemplo, na comunica c~ao sem o (telefonia m ovel, transmiss~ao de r adio e TV), ou, ainda, em canais subaqu aticos. Os algoritmos foram escolhidos com base em recentes estudos desta aplica c~ao, que operam em modo cego ou semicego e utilizam estat sticas de alta ordem, como os algoritmos Bussgang e Matching Pursuit. Os algoritmos foram implementados em ambiente de simula c~ao computacional no qual foram utilizados canais esparsos simples e de resposta ao impulso conhecida, permitindo comparar o comportamento dos diferentes algoritmos, em termos do sinal recuperado, e da inversa da resposta ao impulso do canal original. |
id |
UFF-2_3b162bc7871e234b6d10e00334377b83 |
---|---|
oai_identifier_str |
oai:app.uff.br:1/3934 |
network_acronym_str |
UFF-2 |
network_name_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository_id_str |
2120 |
spelling |
Análise comparativa de algoritmos adaptativos que usam estatísticas de alta ordem para equalização de canais esparsosEqualização de canalEqualização cegaEqualização semicegaCanais esparsosAlgoritmos adaptativosBussgangMatching pursuitSatoSistema de telecomunicaçãoAlgoritmoChannel equalizationBlind equalizationSemiblind equalizationSparse channelsAdaptive algorithmsEm um sistema de comunica c~oes, os sinais s~ao transmitidos atrav es de canais de comunica c~ao que, idealmente, deveriam transportar os dados de maneira a n~ao causar distor c~ao alguma. Por em, em sistemas reais, existem limita c~oes que interferem neste processo causando degrada c~ao nas informa c~oes transmitidas, podendo comprometer sua recep c~ao. Tais limita c~oes ocorrem devido a presen ca de ru do aditivo, e principalmente por interfer^encia intersimb olica, esta caracterizada pela sobreposi c~ao de s mbolos gerados por uma mesma fonte transmissora. A equaliza c~ao de canal e uma das t ecnicas existentes que reduzem os efeitos da interfer^encia intersimb olica, dando maior con abilidade e robustez aos sistemas de comunica c~oes. Dentre as t ecnicas utilizadas para equaliza c~ao de canal, o uso de algoritmo adaptativos vem sendo amplamente utilizados devido as suas propriedades de se auto-ajustarem as varia c~oes que ocorrem ao longo do tempo. Este trabalho tem como objetivo veri car o comportamento de diferentes tipos de algoritmos adaptativos cegos ou semicegos, assim denominados por n~ao utilizarem sequ^encias de treinamento, aplicados a equaliza c~ao de canais esparsos. Canais esparsos s~ao encontrados em diversos sistemas de comunica c~oes como, por exemplo, na comunica c~ao sem o (telefonia m ovel, transmiss~ao de r adio e TV), ou, ainda, em canais subaqu aticos. Os algoritmos foram escolhidos com base em recentes estudos desta aplica c~ao, que operam em modo cego ou semicego e utilizam estat sticas de alta ordem, como os algoritmos Bussgang e Matching Pursuit. Os algoritmos foram implementados em ambiente de simula c~ao computacional no qual foram utilizados canais esparsos simples e de resposta ao impulso conhecida, permitindo comparar o comportamento dos diferentes algoritmos, em termos do sinal recuperado, e da inversa da resposta ao impulso do canal original.In communications systems, information signals are transmitted through communications channels that, ideally, are delivered without distortions. However, on real communications channels there are limitations that interferes on the process, reducing the probability to recover the original signal at receiver. These distortions are basically thermal noise and Intersymbol Interference (ISI), caused by superposition on the received symbols received from the same source. Channel Equalization acts reducing these distortions, bringing more reliability to communications systems. The objective of this work is to verify di erent adaptive algorithms behavior, applied to sparse channel equalization problem. Many communications systems have sparse channels, like broadcast radio, television, mobile telephony and underwater communications. The selected algorithms used in this work includes high order statistics algorithms family, like Bussgang and Matching Pursuit. This kind of algorithms are widely used, with high relevance, for blind channel equalization. The selected algorithms were submitted to computer simulations using simple sparse channels and knowledge about their impulse response, in order to analyze their behavior in therms of bit error rate and the inverse impulse response of the channel.NiteróiFerreira, Tadeu NagashimaMatos, Leni Joaquim deAraujo, Gabriel MatosCarvalho, Murilho Bresciani deFrasson, Felipe2017-07-03T13:00:12Z2017-07-03T13:00:12Z2017-07-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://app.uff.br/riuff/handle/1/3934Aluno de MestradoCC-BY-SAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2022-10-25T15:00:48Zoai:app.uff.br:1/3934Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T11:13:54.450496Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Análise comparativa de algoritmos adaptativos que usam estatísticas de alta ordem para equalização de canais esparsos |
title |
Análise comparativa de algoritmos adaptativos que usam estatísticas de alta ordem para equalização de canais esparsos |
spellingShingle |
Análise comparativa de algoritmos adaptativos que usam estatísticas de alta ordem para equalização de canais esparsos Frasson, Felipe Equalização de canal Equalização cega Equalização semicega Canais esparsos Algoritmos adaptativos Bussgang Matching pursuit Sato Sistema de telecomunicação Algoritmo Channel equalization Blind equalization Semiblind equalization Sparse channels Adaptive algorithms |
title_short |
Análise comparativa de algoritmos adaptativos que usam estatísticas de alta ordem para equalização de canais esparsos |
title_full |
Análise comparativa de algoritmos adaptativos que usam estatísticas de alta ordem para equalização de canais esparsos |
title_fullStr |
Análise comparativa de algoritmos adaptativos que usam estatísticas de alta ordem para equalização de canais esparsos |
title_full_unstemmed |
Análise comparativa de algoritmos adaptativos que usam estatísticas de alta ordem para equalização de canais esparsos |
title_sort |
Análise comparativa de algoritmos adaptativos que usam estatísticas de alta ordem para equalização de canais esparsos |
author |
Frasson, Felipe |
author_facet |
Frasson, Felipe |
author_role |
author |
dc.contributor.none.fl_str_mv |
Ferreira, Tadeu Nagashima Matos, Leni Joaquim de Araujo, Gabriel Matos Carvalho, Murilho Bresciani de |
dc.contributor.author.fl_str_mv |
Frasson, Felipe |
dc.subject.por.fl_str_mv |
Equalização de canal Equalização cega Equalização semicega Canais esparsos Algoritmos adaptativos Bussgang Matching pursuit Sato Sistema de telecomunicação Algoritmo Channel equalization Blind equalization Semiblind equalization Sparse channels Adaptive algorithms |
topic |
Equalização de canal Equalização cega Equalização semicega Canais esparsos Algoritmos adaptativos Bussgang Matching pursuit Sato Sistema de telecomunicação Algoritmo Channel equalization Blind equalization Semiblind equalization Sparse channels Adaptive algorithms |
description |
Em um sistema de comunica c~oes, os sinais s~ao transmitidos atrav es de canais de comunica c~ao que, idealmente, deveriam transportar os dados de maneira a n~ao causar distor c~ao alguma. Por em, em sistemas reais, existem limita c~oes que interferem neste processo causando degrada c~ao nas informa c~oes transmitidas, podendo comprometer sua recep c~ao. Tais limita c~oes ocorrem devido a presen ca de ru do aditivo, e principalmente por interfer^encia intersimb olica, esta caracterizada pela sobreposi c~ao de s mbolos gerados por uma mesma fonte transmissora. A equaliza c~ao de canal e uma das t ecnicas existentes que reduzem os efeitos da interfer^encia intersimb olica, dando maior con abilidade e robustez aos sistemas de comunica c~oes. Dentre as t ecnicas utilizadas para equaliza c~ao de canal, o uso de algoritmo adaptativos vem sendo amplamente utilizados devido as suas propriedades de se auto-ajustarem as varia c~oes que ocorrem ao longo do tempo. Este trabalho tem como objetivo veri car o comportamento de diferentes tipos de algoritmos adaptativos cegos ou semicegos, assim denominados por n~ao utilizarem sequ^encias de treinamento, aplicados a equaliza c~ao de canais esparsos. Canais esparsos s~ao encontrados em diversos sistemas de comunica c~oes como, por exemplo, na comunica c~ao sem o (telefonia m ovel, transmiss~ao de r adio e TV), ou, ainda, em canais subaqu aticos. Os algoritmos foram escolhidos com base em recentes estudos desta aplica c~ao, que operam em modo cego ou semicego e utilizam estat sticas de alta ordem, como os algoritmos Bussgang e Matching Pursuit. Os algoritmos foram implementados em ambiente de simula c~ao computacional no qual foram utilizados canais esparsos simples e de resposta ao impulso conhecida, permitindo comparar o comportamento dos diferentes algoritmos, em termos do sinal recuperado, e da inversa da resposta ao impulso do canal original. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017-07-03T13:00:12Z 2017-07-03T13:00:12Z 2017-07-03 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://app.uff.br/riuff/handle/1/3934 Aluno de Mestrado |
url |
https://app.uff.br/riuff/handle/1/3934 |
identifier_str_mv |
Aluno de Mestrado |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
CC-BY-SA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
CC-BY-SA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Niterói |
publisher.none.fl_str_mv |
Niterói |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF) instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
collection |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
riuff@id.uff.br |
_version_ |
1811823696649650176 |