Hybrid systems of Graphene and h-BN
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
Texto Completo: | https://app.uff.br/riuff/handle/1/6233 |
Resumo: | This thesis is devoted to a theoretical study on isolated graphene nanoribbons, isolated hexagonal boron nitrite systems, and other hybrid configurations mixing both kinds of nanoribbon systems. First we analyze the main aspects of the electronic properties of graphene and h-BN nanoribbons including the possibility of getting half metallicity under the presence of external electric fields Simple tight binding approximations were used as a starting point and real-space normalization schemes are followed to derive Green’s functions, local density of states, and also some transport properties such as the conductance. We then construct a hybrid graphene-BN nanoribbon system, using a Hubbard model Hamiltonian within a mean field approximation. Due to different electronegativities of the boron and nitrogen atoms, an electric field is induced across the zigzag graphene strip, breaking the spin degeneracy of the electronic band structure. Optimal tight-binding parameters are found from DFT calculations carried on the Quantum Espresso code, based on density-functional theory, plane waves and pseudopotentials. Edge potentials were proposed as corrections for on-site energies, and to investigate how the BN-graphene nanoribbon interfaces are perturbed. We also study the effects of impurities along the graphene nanoribbon and at the interface regions. We found that energy gap sizes may be properly engineered by controlling the spatial doping process and, moreover, that binding energy impurity calculations may be used to study impurity diffusion processes along the mixed nanoribbons. We show that substitutional impurities may enhance half-metallic response. Different impurity configurations and the corresponding energy stabilities were studied. In a second study, we consider deformations in graphene nanoribbons that may be considered as central elements in the novel field of straintronics. Various strain geometries have been proposed to produce specific properties, but their experimental realization has been limited. Because strained folds can be engineered on graphene samples on appropriate substrates, we study their effects on graphene transport properties and on the local density of states. Conductance calculations reveal extra channels within the energy range corresponding to the first conductance plateau for the undeformed ribbon, in addition to those due to edge states. Band structure calculations confirm that these channels originate from higher energy states that localize along the strained fold-like area. Furthermore, states with the same velocity show real spatial valley polarization, i.e., a current injected along the deformed structure will be split into two currents: one along the center of the strained fold constituted by states from one valley, and another running at its sides with contributions from states of the other valley. In addition to exhibiting sublat- tice symmetry breaking, these states are valley polarized, with quasiballistic properties in smooth disorder potentials. These findings could be tested in properly engineered experimental settings. We also investigate the effects of Coulomb correlations on the half metallicity of graphene nanoribbons when mechanical deformations like fold perturbations are taken into account. |
id |
UFF-2_45bb3f946fac6f131c21b2b897f1ee2f |
---|---|
oai_identifier_str |
oai:app.uff.br:1/6233 |
network_acronym_str |
UFF-2 |
network_name_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository_id_str |
2120 |
spelling |
Hybrid systems of Graphene and h-BNMeio-metalGrafenoNitreto de boroDeformaçãoPolarizaçãoMeio-metalGrafenoNitreto de boroDeformaçãoPolarizaçãoThis thesis is devoted to a theoretical study on isolated graphene nanoribbons, isolated hexagonal boron nitrite systems, and other hybrid configurations mixing both kinds of nanoribbon systems. First we analyze the main aspects of the electronic properties of graphene and h-BN nanoribbons including the possibility of getting half metallicity under the presence of external electric fields Simple tight binding approximations were used as a starting point and real-space normalization schemes are followed to derive Green’s functions, local density of states, and also some transport properties such as the conductance. We then construct a hybrid graphene-BN nanoribbon system, using a Hubbard model Hamiltonian within a mean field approximation. Due to different electronegativities of the boron and nitrogen atoms, an electric field is induced across the zigzag graphene strip, breaking the spin degeneracy of the electronic band structure. Optimal tight-binding parameters are found from DFT calculations carried on the Quantum Espresso code, based on density-functional theory, plane waves and pseudopotentials. Edge potentials were proposed as corrections for on-site energies, and to investigate how the BN-graphene nanoribbon interfaces are perturbed. We also study the effects of impurities along the graphene nanoribbon and at the interface regions. We found that energy gap sizes may be properly engineered by controlling the spatial doping process and, moreover, that binding energy impurity calculations may be used to study impurity diffusion processes along the mixed nanoribbons. We show that substitutional impurities may enhance half-metallic response. Different impurity configurations and the corresponding energy stabilities were studied. In a second study, we consider deformations in graphene nanoribbons that may be considered as central elements in the novel field of straintronics. Various strain geometries have been proposed to produce specific properties, but their experimental realization has been limited. Because strained folds can be engineered on graphene samples on appropriate substrates, we study their effects on graphene transport properties and on the local density of states. Conductance calculations reveal extra channels within the energy range corresponding to the first conductance plateau for the undeformed ribbon, in addition to those due to edge states. Band structure calculations confirm that these channels originate from higher energy states that localize along the strained fold-like area. Furthermore, states with the same velocity show real spatial valley polarization, i.e., a current injected along the deformed structure will be split into two currents: one along the center of the strained fold constituted by states from one valley, and another running at its sides with contributions from states of the other valley. In addition to exhibiting sublat- tice symmetry breaking, these states are valley polarized, with quasiballistic properties in smooth disorder potentials. These findings could be tested in properly engineered experimental settings. We also investigate the effects of Coulomb correlations on the half metallicity of graphene nanoribbons when mechanical deformations like fold perturbations are taken into account.Conselho Nacional de Desenvolvimento Científico e TecnológicoEsta tese é dedicada ao estudo teórico de nanofitas de grafeno isoladas, nanofi- tas de nitreto de boro isoladas e algumas outras configurações híbridas que misturam ambos tipos de nanofitas. Inicialmente analisamos os aspectos gerais e calculamos propriedades físicas das nanofitas de grafeno e das nanofitas de BN hexagonal, incluindo a possibilidade de se obter um comportamento de semimetalicidade na presença de campos elétricos externos aplicados na di- reção transversal das fitas. Hamiltonianos simples na aproximação tight bind- ing são usados como ponto de partida e esquemas de normalização no espaço real são adotados para se derivar funções de Green, densidades de estados eletrônicos locais e ainda algumas propriedades de transporte como a con- dutância eletrônica. Construímos então um sistema híbrido formado por uma nanofita de grafeno embebida em nanofitas de BN, e adotamos um Hamil- toniano de Hubbard seguindo a aproximação de campo médio. Devido as diferentes eletronegatividades dos átomos de boro e de nitrogênio, um campo elétrico é induzido ao longo da fita zigzag de grafeno embebida, levantando a degnerescência de spin da estrutura de bandas eletrônicas. Neste trabalho procuramos um conjunto de parâmetros otimizados a partir de cálculos obtidos usando o código “Quantum Espresso”, baseado na teoria do funcional da den- sidade (DFT), usando ondas planas e pseudopotenciais. Potenciais de borda e de interface são propostos como correções para as energias “on-site”, e para investigar como as nanofitas de BN são perturbadas nas interfaces. Estudamos ainda os efeitos de impurezas do tipo B e N ao longo da região sanduichada da nanofita de grafeno e nas regiões das interfaces. Encontramos que gaps de energia podem ser propriamente manipulados e “engenheirado” a partir do controle do processo de dopagem espacial, e que cálculos de energia de ligação de impurezas podem ser usados para estudar processos de difusão ao longo das nanofitas mescladas. Mostramos ainda que impurezas substitucionais po- vi dem aumentar a resposta de semimetalicidade. Diferentes configurações de impurezas e as respectivas estabilidades energéticas são estudadas. Num segundo estudo consideramos deformações em nanofitas de grafeno, con- sideradas elementos centrais no novo campo de interesse que é a “straintronics”. Várias geometrias de strain tem sido propostas na literatura para produzir propriedades específicas, mas suas realizações experimentais tem sido bas- tante limitadas. Como deformações do tipo fold podem ser “engenheirados” em amostras de grafeno sobre substratos apropriados ou mesmo suspensas propomos estudar o efeito destas tensões nas propriedades de transporte e nas densidades de estados local e total desses sistemas quasi-unidimensionais. Cálculos de condutância revelam canais extras no intervalo de energia corre- spondente ao primeiro plateau quando a fita não está deformada, além daque- les devido aos bem conhecidos estados de borda. Cálculos de estrutura de bandas confirmam que estes canais extras se originam de estados de energia mais alta que se localizam ao longo da área deformada. Além disso, estados com a mesma velocidade mostram polarização de vale no espaço real, i.e., uma corrente injetada ao longo da estrutura deformada será dividida em duas correntes: uma ao longo do centro da perturbação (strained fold) constituída dos estados de um vale, e outra por estados que correm nas laterais da fita com contribuições dos estados de outro vale. Além de exibirem quebra de simetria de rede, estes estados são vale-polarizados, com propriedades quasi balísticas mesmo em potencias de fraca desordem. Estes resultados podem ser testados em arranjos experimentais apropriados. Para finalizar, investigamos os efeitos de correlações Coulombianas sobre a semimetalicidade das nanofitas de grafeno quando deformações mecânicas como as do tipo fold são levadas em conta.NiteróiLatgé, Andrea BritoChinchay, Carlos Alberto León2018-04-12T19:12:54Z2018-04-12T19:12:54Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://app.uff.br/riuff/handle/1/6233Aluno de doutoradoopenAccesshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/CC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2020-07-27T17:11:51Zoai:app.uff.br:1/6233Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T10:48:06.907419Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Hybrid systems of Graphene and h-BN |
title |
Hybrid systems of Graphene and h-BN |
spellingShingle |
Hybrid systems of Graphene and h-BN Chinchay, Carlos Alberto León Meio-metal Grafeno Nitreto de boro Deformação Polarização Meio-metal Grafeno Nitreto de boro Deformação Polarização |
title_short |
Hybrid systems of Graphene and h-BN |
title_full |
Hybrid systems of Graphene and h-BN |
title_fullStr |
Hybrid systems of Graphene and h-BN |
title_full_unstemmed |
Hybrid systems of Graphene and h-BN |
title_sort |
Hybrid systems of Graphene and h-BN |
author |
Chinchay, Carlos Alberto León |
author_facet |
Chinchay, Carlos Alberto León |
author_role |
author |
dc.contributor.none.fl_str_mv |
Latgé, Andrea Brito |
dc.contributor.author.fl_str_mv |
Chinchay, Carlos Alberto León |
dc.subject.por.fl_str_mv |
Meio-metal Grafeno Nitreto de boro Deformação Polarização Meio-metal Grafeno Nitreto de boro Deformação Polarização |
topic |
Meio-metal Grafeno Nitreto de boro Deformação Polarização Meio-metal Grafeno Nitreto de boro Deformação Polarização |
description |
This thesis is devoted to a theoretical study on isolated graphene nanoribbons, isolated hexagonal boron nitrite systems, and other hybrid configurations mixing both kinds of nanoribbon systems. First we analyze the main aspects of the electronic properties of graphene and h-BN nanoribbons including the possibility of getting half metallicity under the presence of external electric fields Simple tight binding approximations were used as a starting point and real-space normalization schemes are followed to derive Green’s functions, local density of states, and also some transport properties such as the conductance. We then construct a hybrid graphene-BN nanoribbon system, using a Hubbard model Hamiltonian within a mean field approximation. Due to different electronegativities of the boron and nitrogen atoms, an electric field is induced across the zigzag graphene strip, breaking the spin degeneracy of the electronic band structure. Optimal tight-binding parameters are found from DFT calculations carried on the Quantum Espresso code, based on density-functional theory, plane waves and pseudopotentials. Edge potentials were proposed as corrections for on-site energies, and to investigate how the BN-graphene nanoribbon interfaces are perturbed. We also study the effects of impurities along the graphene nanoribbon and at the interface regions. We found that energy gap sizes may be properly engineered by controlling the spatial doping process and, moreover, that binding energy impurity calculations may be used to study impurity diffusion processes along the mixed nanoribbons. We show that substitutional impurities may enhance half-metallic response. Different impurity configurations and the corresponding energy stabilities were studied. In a second study, we consider deformations in graphene nanoribbons that may be considered as central elements in the novel field of straintronics. Various strain geometries have been proposed to produce specific properties, but their experimental realization has been limited. Because strained folds can be engineered on graphene samples on appropriate substrates, we study their effects on graphene transport properties and on the local density of states. Conductance calculations reveal extra channels within the energy range corresponding to the first conductance plateau for the undeformed ribbon, in addition to those due to edge states. Band structure calculations confirm that these channels originate from higher energy states that localize along the strained fold-like area. Furthermore, states with the same velocity show real spatial valley polarization, i.e., a current injected along the deformed structure will be split into two currents: one along the center of the strained fold constituted by states from one valley, and another running at its sides with contributions from states of the other valley. In addition to exhibiting sublat- tice symmetry breaking, these states are valley polarized, with quasiballistic properties in smooth disorder potentials. These findings could be tested in properly engineered experimental settings. We also investigate the effects of Coulomb correlations on the half metallicity of graphene nanoribbons when mechanical deformations like fold perturbations are taken into account. |
publishDate |
2017 |
dc.date.none.fl_str_mv |
2017 2018-04-12T19:12:54Z 2018-04-12T19:12:54Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://app.uff.br/riuff/handle/1/6233 Aluno de doutorado |
url |
https://app.uff.br/riuff/handle/1/6233 |
identifier_str_mv |
Aluno de doutorado |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/br/ CC-BY-SA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
openAccess http://creativecommons.org/licenses/by-nc-nd/3.0/br/ CC-BY-SA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Niterói |
publisher.none.fl_str_mv |
Niterói |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF) instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
collection |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
riuff@id.uff.br |
_version_ |
1811823574077407232 |