Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial

Detalhes bibliográficos
Autor(a) principal: Ávila, Patrick Douglas Doglio Nunes de
Data de Publicação: 2024
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da Universidade Federal Fluminense (RIUFF)
Texto Completo: https://app.uff.br/riuff/handle/1/33083
Resumo: No Problema da Cobertura Máxima p-Hub com Alocação Simples (AS-PCMpH), duas decisões são tomadas: a localização de p hubs e a atribuição de cada ponto não hub a exatamente um hub localizado. Essas decisões geram um custo de serviço para cada par origem-destino (O/D) da rede. O problema considera uma função não-decrescente que associa cada par O/D com um grau de cobertura l 2 L de acordo com o seu custo de serviço, onde L é o conjunto discreto com valores entre 0 e 1. Quando L = f0; 1g, o critério de cobertura adotado é binário. Caso contrário, o critério de cobertura adotado é parcial. O AS-PCMpH visa maximizar a soma dos fluxos de cada par O/D ponderado pelo seu grau de cobertura. Neste trabalho são apresentadas uma nova formulação e um conjunto de desigualdades válidas para o AS-PCMpH que são válidas para os dois critérios de cobertura. É proposto que as desigualdades sejam geradas sob demanda, seguindo a clássica abordagem de branch-and-cut. De modo a provar a robustez do método proposto, são apresentados diversos experimentos computacionais, e eles mostram que o método proposto supera a melhor formulação exata da literatura, sendo capaz de obter a solução ótima de instâncias grandes pela primeira vez
id UFF-2_4c113ba5e97827983c8d3f43b22dda83
oai_identifier_str oai:app.uff.br:1/33083
network_acronym_str UFF-2
network_name_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository_id_str 2120
spelling Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcialProgramação inteiraLocalização de hubsCobertura máximaPesquisa operacionalLogísticaOtimização combinatóriaProgramação inteiraInteger programmingHub locationMaximal coveringNo Problema da Cobertura Máxima p-Hub com Alocação Simples (AS-PCMpH), duas decisões são tomadas: a localização de p hubs e a atribuição de cada ponto não hub a exatamente um hub localizado. Essas decisões geram um custo de serviço para cada par origem-destino (O/D) da rede. O problema considera uma função não-decrescente que associa cada par O/D com um grau de cobertura l 2 L de acordo com o seu custo de serviço, onde L é o conjunto discreto com valores entre 0 e 1. Quando L = f0; 1g, o critério de cobertura adotado é binário. Caso contrário, o critério de cobertura adotado é parcial. O AS-PCMpH visa maximizar a soma dos fluxos de cada par O/D ponderado pelo seu grau de cobertura. Neste trabalho são apresentadas uma nova formulação e um conjunto de desigualdades válidas para o AS-PCMpH que são válidas para os dois critérios de cobertura. É proposto que as desigualdades sejam geradas sob demanda, seguindo a clássica abordagem de branch-and-cut. De modo a provar a robustez do método proposto, são apresentados diversos experimentos computacionais, e eles mostram que o método proposto supera a melhor formulação exata da literatura, sendo capaz de obter a solução ótima de instâncias grandes pela primeira vezIn the Single Allocation p-Hub Maximal Covering Problem (SApHMCP), two decisions are taken: the location of p hubs and the assignment of each non-hub point to exactly one placed hub. Those decisions generate a service cost for each origin-destination (O/D) pair from the network. The problem considers a non-increasing function that associates each O/D pair with a degree of coverage l 2 L according to its service cost, where L is a discrete set with values between 0 and 1. When L = f0; 1g, the coverage criterion adopted is binary. Otherwise, the coverage criterion adopted is partial. The SApHMCP aims to maximize the sum of each O/D pair flow weighted by its degree of coverage. In this work, a new formulation and a set of valid inequalities for the SApHMCP that are valid to both coverage criteria are presented. It is proposed that the inequalities are generated on demand, following a classical branch-andcut approach. In order to prove the robustness of the proposed method, several computational experiments are presented, and they show that the proposed method outperforms the best exact formulation found in the literature, being able to optimally solve several large instances for the first time75 f.Roboredo, Marcos CostaPessoa, Artur AlvesBarboza, Eduardo UchoaVelasco, André SoaresÁvila, Patrick Douglas Doglio Nunes de2024-07-08T18:13:37Z2024-07-08T18:13:37Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfÁVILA, Patrick Douglas Doglio Nunes de. Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial. 2021. 75 f. Dissertação (Mestrado em Engenharia de Produção) - Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal Fluminense, Niterói, 2021.https://app.uff.br/riuff/handle/1/33083CC-BY-SAinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2024-07-08T18:13:41Zoai:app.uff.br:1/33083Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T11:19:52.927647Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial
title Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial
spellingShingle Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial
Ávila, Patrick Douglas Doglio Nunes de
Programação inteira
Localização de hubs
Cobertura máxima
Pesquisa operacional
Logística
Otimização combinatória
Programação inteira
Integer programming
Hub location
Maximal covering
title_short Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial
title_full Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial
title_fullStr Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial
title_full_unstemmed Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial
title_sort Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial
author Ávila, Patrick Douglas Doglio Nunes de
author_facet Ávila, Patrick Douglas Doglio Nunes de
author_role author
dc.contributor.none.fl_str_mv Roboredo, Marcos Costa
Pessoa, Artur Alves
Barboza, Eduardo Uchoa
Velasco, André Soares
dc.contributor.author.fl_str_mv Ávila, Patrick Douglas Doglio Nunes de
dc.subject.por.fl_str_mv Programação inteira
Localização de hubs
Cobertura máxima
Pesquisa operacional
Logística
Otimização combinatória
Programação inteira
Integer programming
Hub location
Maximal covering
topic Programação inteira
Localização de hubs
Cobertura máxima
Pesquisa operacional
Logística
Otimização combinatória
Programação inteira
Integer programming
Hub location
Maximal covering
description No Problema da Cobertura Máxima p-Hub com Alocação Simples (AS-PCMpH), duas decisões são tomadas: a localização de p hubs e a atribuição de cada ponto não hub a exatamente um hub localizado. Essas decisões geram um custo de serviço para cada par origem-destino (O/D) da rede. O problema considera uma função não-decrescente que associa cada par O/D com um grau de cobertura l 2 L de acordo com o seu custo de serviço, onde L é o conjunto discreto com valores entre 0 e 1. Quando L = f0; 1g, o critério de cobertura adotado é binário. Caso contrário, o critério de cobertura adotado é parcial. O AS-PCMpH visa maximizar a soma dos fluxos de cada par O/D ponderado pelo seu grau de cobertura. Neste trabalho são apresentadas uma nova formulação e um conjunto de desigualdades válidas para o AS-PCMpH que são válidas para os dois critérios de cobertura. É proposto que as desigualdades sejam geradas sob demanda, seguindo a clássica abordagem de branch-and-cut. De modo a provar a robustez do método proposto, são apresentados diversos experimentos computacionais, e eles mostram que o método proposto supera a melhor formulação exata da literatura, sendo capaz de obter a solução ótima de instâncias grandes pela primeira vez
publishDate 2024
dc.date.none.fl_str_mv 2024-07-08T18:13:37Z
2024-07-08T18:13:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ÁVILA, Patrick Douglas Doglio Nunes de. Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial. 2021. 75 f. Dissertação (Mestrado em Engenharia de Produção) - Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal Fluminense, Niterói, 2021.
https://app.uff.br/riuff/handle/1/33083
identifier_str_mv ÁVILA, Patrick Douglas Doglio Nunes de. Uma nova formulação e um algoritmo branch-and-cut para o problema da cobertura máxima P-Hub com alocação simples e critérios de cobertura binária e parcial. 2021. 75 f. Dissertação (Mestrado em Engenharia de Produção) - Programa de Pós-Graduação em Engenharia de Produção, Universidade Federal Fluminense, Niterói, 2021.
url https://app.uff.br/riuff/handle/1/33083
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv CC-BY-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv CC-BY-SA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
collection Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv riuff@id.uff.br
_version_ 1811823725084934144