Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
Texto Completo: | http://app.uff.br/riuff/handle/1/29222 |
Resumo: | In the mean curvature flow theory, a topic of great interest is to study possible singularitiesof this flow. In R n+1, the singularity models for this flow can be associated with hypersurfaces called f-minimal, that is, hypersurfaces with null weighted mean curvature. Some examples of f-minimal hypersurfaces are self-shrinkers, self-expanders and translating solitons, they play an important role in this theory since they describe singularity models for the mean curvature flow. In this thesis, we study a generalization of f-minimal hypersurfaces which are called CWMC hypersurfaces or λ-hypersurfaces in shrinking Ricci solitons. We prove some rigidity theorems seeking to classify these hypersurfaces in the Gaussian shrinking Ricci soliton and in the cylinder shrinking Ricci solitons. For the case the ambient is a cylinder shrinking Ricci soliton, we also study level sets and show some geometric properties of CWMC hypersurfaces. |
id |
UFF-2_d3f5d48617933edc5c197e58136e2c8d |
---|---|
oai_identifier_str |
oai:app.uff.br:1/29222 |
network_acronym_str |
UFF-2 |
network_name_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository_id_str |
2120 |
spelling |
Constant weighted mean curvature hypersurfaces in shrinking Ricci solitonsCurva MatemáticaGeometriaIn the mean curvature flow theory, a topic of great interest is to study possible singularitiesof this flow. In R n+1, the singularity models for this flow can be associated with hypersurfaces called f-minimal, that is, hypersurfaces with null weighted mean curvature. Some examples of f-minimal hypersurfaces are self-shrinkers, self-expanders and translating solitons, they play an important role in this theory since they describe singularity models for the mean curvature flow. In this thesis, we study a generalization of f-minimal hypersurfaces which are called CWMC hypersurfaces or λ-hypersurfaces in shrinking Ricci solitons. We prove some rigidity theorems seeking to classify these hypersurfaces in the Gaussian shrinking Ricci soliton and in the cylinder shrinking Ricci solitons. For the case the ambient is a cylinder shrinking Ricci soliton, we also study level sets and show some geometric properties of CWMC hypersurfaces.Na teoria do fluxo da curvatura média, um tópico de grande interesse é o estudo de possíveis singularidades desse fluxo. Em Rn+1, os modelos de singularidade deste fluxo podem ser associados a hipersuperfícies chamadas f -mínimas, isto é, hipersuperfícies com curvatura média com peso nula. Alguns exemplos de hipersuperfícies f-mínimas são os self-shrinkers, self-expanders e translating solitons, que desempenham um papel importante nesta teoria pois descrevem modelos de singularidades para o fluxo de curvatura média. Nesta tese, estudamos uma generalização das hipersuperfícies f-mínimas que são chamadas de hipersuperfícies CWMC ou λ-hipersuperfícies em shrinking Ricci solitons. Provamos alguns teoremas de rigidez buscando classificar essas hipersuperfícies no shrinking Ricci soliton Gaussiano e em cilindros shrinking Ricci solitons. No caso em que o ambiente é um cilindro shrinking Ricci soliton, também estudamos conjuntos de níveis e mostramos algumas propriedades geométricas das hipersuperfícies CWMC.57 f.Zhou, Detanghttp://lattes.cnpq.br/2581886971068744Miranda, Igor Sampaio e Melo de2023-06-26T20:56:23Z2023-06-26T20:56:23Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfMIRANDA, Igor Sampaio e Melo de. Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons. 2021. 57 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2021.http://app.uff.br/riuff/handle/1/29222CC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2023-06-26T20:56:27Zoai:app.uff.br:1/29222Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T11:09:38.847175Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false |
dc.title.none.fl_str_mv |
Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons |
title |
Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons |
spellingShingle |
Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons Miranda, Igor Sampaio e Melo de Curva Matemática Geometria |
title_short |
Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons |
title_full |
Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons |
title_fullStr |
Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons |
title_full_unstemmed |
Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons |
title_sort |
Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons |
author |
Miranda, Igor Sampaio e Melo de |
author_facet |
Miranda, Igor Sampaio e Melo de |
author_role |
author |
dc.contributor.none.fl_str_mv |
Zhou, Detang http://lattes.cnpq.br/2581886971068744 |
dc.contributor.author.fl_str_mv |
Miranda, Igor Sampaio e Melo de |
dc.subject.por.fl_str_mv |
Curva Matemática Geometria |
topic |
Curva Matemática Geometria |
description |
In the mean curvature flow theory, a topic of great interest is to study possible singularitiesof this flow. In R n+1, the singularity models for this flow can be associated with hypersurfaces called f-minimal, that is, hypersurfaces with null weighted mean curvature. Some examples of f-minimal hypersurfaces are self-shrinkers, self-expanders and translating solitons, they play an important role in this theory since they describe singularity models for the mean curvature flow. In this thesis, we study a generalization of f-minimal hypersurfaces which are called CWMC hypersurfaces or λ-hypersurfaces in shrinking Ricci solitons. We prove some rigidity theorems seeking to classify these hypersurfaces in the Gaussian shrinking Ricci soliton and in the cylinder shrinking Ricci solitons. For the case the ambient is a cylinder shrinking Ricci soliton, we also study level sets and show some geometric properties of CWMC hypersurfaces. |
publishDate |
2023 |
dc.date.none.fl_str_mv |
2023-06-26T20:56:23Z 2023-06-26T20:56:23Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
MIRANDA, Igor Sampaio e Melo de. Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons. 2021. 57 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2021. http://app.uff.br/riuff/handle/1/29222 |
identifier_str_mv |
MIRANDA, Igor Sampaio e Melo de. Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons. 2021. 57 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2021. |
url |
http://app.uff.br/riuff/handle/1/29222 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
CC-BY-SA info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
CC-BY-SA |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF) instname:Universidade Federal Fluminense (UFF) instacron:UFF |
instname_str |
Universidade Federal Fluminense (UFF) |
instacron_str |
UFF |
institution |
UFF |
reponame_str |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
collection |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) |
repository.name.fl_str_mv |
Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF) |
repository.mail.fl_str_mv |
riuff@id.uff.br |
_version_ |
1811823676629188608 |