Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons

Detalhes bibliográficos
Autor(a) principal: Miranda, Igor Sampaio e Melo de
Data de Publicação: 2023
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal Fluminense (RIUFF)
Texto Completo: http://app.uff.br/riuff/handle/1/29222
Resumo: In the mean curvature flow theory, a topic of great interest is to study possible singularitiesof this flow. In R n+1, the singularity models for this flow can be associated with hypersurfaces called f-minimal, that is, hypersurfaces with null weighted mean curvature. Some examples of f-minimal hypersurfaces are self-shrinkers, self-expanders and translating solitons, they play an important role in this theory since they describe singularity models for the mean curvature flow. In this thesis, we study a generalization of f-minimal hypersurfaces which are called CWMC hypersurfaces or λ-hypersurfaces in shrinking Ricci solitons. We prove some rigidity theorems seeking to classify these hypersurfaces in the Gaussian shrinking Ricci soliton and in the cylinder shrinking Ricci solitons. For the case the ambient is a cylinder shrinking Ricci soliton, we also study level sets and show some geometric properties of CWMC hypersurfaces.
id UFF-2_d3f5d48617933edc5c197e58136e2c8d
oai_identifier_str oai:app.uff.br:1/29222
network_acronym_str UFF-2
network_name_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository_id_str 2120
spelling Constant weighted mean curvature hypersurfaces in shrinking Ricci solitonsCurva MatemáticaGeometriaIn the mean curvature flow theory, a topic of great interest is to study possible singularitiesof this flow. In R n+1, the singularity models for this flow can be associated with hypersurfaces called f-minimal, that is, hypersurfaces with null weighted mean curvature. Some examples of f-minimal hypersurfaces are self-shrinkers, self-expanders and translating solitons, they play an important role in this theory since they describe singularity models for the mean curvature flow. In this thesis, we study a generalization of f-minimal hypersurfaces which are called CWMC hypersurfaces or λ-hypersurfaces in shrinking Ricci solitons. We prove some rigidity theorems seeking to classify these hypersurfaces in the Gaussian shrinking Ricci soliton and in the cylinder shrinking Ricci solitons. For the case the ambient is a cylinder shrinking Ricci soliton, we also study level sets and show some geometric properties of CWMC hypersurfaces.Na teoria do fluxo da curvatura média, um tópico de grande interesse é o estudo de possíveis singularidades desse fluxo. Em Rn+1, os modelos de singularidade deste fluxo podem ser associados a hipersuperfícies chamadas f -mínimas, isto é, hipersuperfícies com curvatura média com peso nula. Alguns exemplos de hipersuperfícies f-mínimas são os self-shrinkers, self-expanders e translating solitons, que desempenham um papel importante nesta teoria pois descrevem modelos de singularidades para o fluxo de curvatura média. Nesta tese, estudamos uma generalização das hipersuperfícies f-mínimas que são chamadas de hipersuperfícies CWMC ou λ-hipersuperfícies em shrinking Ricci solitons. Provamos alguns teoremas de rigidez buscando classificar essas hipersuperfícies no shrinking Ricci soliton Gaussiano e em cilindros shrinking Ricci solitons. No caso em que o ambiente é um cilindro shrinking Ricci soliton, também estudamos conjuntos de níveis e mostramos algumas propriedades geométricas das hipersuperfícies CWMC.57 f.Zhou, Detanghttp://lattes.cnpq.br/2581886971068744Miranda, Igor Sampaio e Melo de2023-06-26T20:56:23Z2023-06-26T20:56:23Zinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfMIRANDA, Igor Sampaio e Melo de. Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons. 2021. 57 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2021.http://app.uff.br/riuff/handle/1/29222CC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2023-06-26T20:56:27Zoai:app.uff.br:1/29222Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202024-08-19T11:09:38.847175Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons
title Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons
spellingShingle Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons
Miranda, Igor Sampaio e Melo de
Curva Matemática
Geometria
title_short Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons
title_full Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons
title_fullStr Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons
title_full_unstemmed Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons
title_sort Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons
author Miranda, Igor Sampaio e Melo de
author_facet Miranda, Igor Sampaio e Melo de
author_role author
dc.contributor.none.fl_str_mv Zhou, Detang
http://lattes.cnpq.br/2581886971068744
dc.contributor.author.fl_str_mv Miranda, Igor Sampaio e Melo de
dc.subject.por.fl_str_mv Curva Matemática
Geometria
topic Curva Matemática
Geometria
description In the mean curvature flow theory, a topic of great interest is to study possible singularitiesof this flow. In R n+1, the singularity models for this flow can be associated with hypersurfaces called f-minimal, that is, hypersurfaces with null weighted mean curvature. Some examples of f-minimal hypersurfaces are self-shrinkers, self-expanders and translating solitons, they play an important role in this theory since they describe singularity models for the mean curvature flow. In this thesis, we study a generalization of f-minimal hypersurfaces which are called CWMC hypersurfaces or λ-hypersurfaces in shrinking Ricci solitons. We prove some rigidity theorems seeking to classify these hypersurfaces in the Gaussian shrinking Ricci soliton and in the cylinder shrinking Ricci solitons. For the case the ambient is a cylinder shrinking Ricci soliton, we also study level sets and show some geometric properties of CWMC hypersurfaces.
publishDate 2023
dc.date.none.fl_str_mv 2023-06-26T20:56:23Z
2023-06-26T20:56:23Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MIRANDA, Igor Sampaio e Melo de. Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons. 2021. 57 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2021.
http://app.uff.br/riuff/handle/1/29222
identifier_str_mv MIRANDA, Igor Sampaio e Melo de. Constant weighted mean curvature hypersurfaces in shrinking Ricci solitons. 2021. 57 f. Tese (Doutorado em Matemática) - Programa de Pós-Graduação em Matemática, Instituto de Matemática e Estatística, Universidade Federal Fluminense, Niterói, 2021.
url http://app.uff.br/riuff/handle/1/29222
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv CC-BY-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv CC-BY-SA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
collection Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv riuff@id.uff.br
_version_ 1811823676629188608