Study of transport properties in graphene nanostructures in the presence of deformations

Detalhes bibliográficos
Autor(a) principal: Torres Montilla, Vanessa Carolina
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da Universidade Federal Fluminense (RIUFF)
Texto Completo: https://app.uff.br/riuff/handle/1/6290
Resumo: We study the effect of the out-of-plane deformations on the electronic and transport properties of particular graphene nanostructures. Specifically, we consider graphene nanoribbon, hexagonal and triangular graphene flakes, with armchair and zigzag edges. For this purpose, we considered a first neighbour tight-binding approach and the linear elasticity theory. The conductance and electronic density of state were carried out by using the Landauer-Büttiker formalism and recursive Green’s function method for a multiterminal system. For armchair graphene nanoribbons with fold-like deformation, as the translation symmetry is preserved, the conductance is still marked by a sequence of plateaux, similar to the case of pristine graphene nanoribbons. Here, we found that the energy gap can be drastically modulated by changing the deformation parameters, and that relative length of the deformed structure plays a key role in determining the energy gap and its maximum values. In addition, we show that the numerical results are analytically predicted by solving the Dirac equation for the strained system. Graphene flake systems were studied taking into account three types of mechanical out-of-plane deformations: Gaussian-like, fold-like and smoothing fold. For undeformed systems, the electronic properties are influenced by edges, shape and size. In fact, the triangular zigzag graphene flakes exhibit edge states at the Fermi energy, while localized states in the corners are observed in the case of triangular armchair flakes. On the other hand, the conductance for three-terminal undeformed triangular flake presents a similar behavior to the ballistic transport, while hexagonal flake systems are characterized by resonant states and extended bands for zigzag and armchair case, respectively. For deformed graphene flake systems, resonant levels are more impressive for hexagonal than triangular at lower energies. In triangular flakes, the electronic transport is more sensible to deformations extended to the leads. Finally, we study the effects of the sublattice asymmetry originated by a Gaussian-like deformation in the graphene sheet and graphene nanoribbons, on the adsorption of one hydrogen-like atom. It was shown that in graphene sheet one sublattice can be more energetically favorable for impurity adsorption than the other and that this feature can be controlled by varying the strain parameters, while in a graphene nanoribbons, absortion of impurities at the edges are more favourable, despite of the deformation.
id UFF-2_dafe5ef5c824c40b796a03279bdf5534
oai_identifier_str oai:app.uff.br:1/6290
network_acronym_str UFF-2
network_name_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository_id_str 2120
spelling Study of transport properties in graphene nanostructures in the presence of deformationsDeformationQuantum transportGraphene nanostructureElectronic proprietariesDeformaçãoTunelamento (física)GrafenoNanoestruturaDeformaçõesPropriedades eletrônicasNanoestruturas de grafenoTransporte eletrônicoWe study the effect of the out-of-plane deformations on the electronic and transport properties of particular graphene nanostructures. Specifically, we consider graphene nanoribbon, hexagonal and triangular graphene flakes, with armchair and zigzag edges. For this purpose, we considered a first neighbour tight-binding approach and the linear elasticity theory. The conductance and electronic density of state were carried out by using the Landauer-Büttiker formalism and recursive Green’s function method for a multiterminal system. For armchair graphene nanoribbons with fold-like deformation, as the translation symmetry is preserved, the conductance is still marked by a sequence of plateaux, similar to the case of pristine graphene nanoribbons. Here, we found that the energy gap can be drastically modulated by changing the deformation parameters, and that relative length of the deformed structure plays a key role in determining the energy gap and its maximum values. In addition, we show that the numerical results are analytically predicted by solving the Dirac equation for the strained system. Graphene flake systems were studied taking into account three types of mechanical out-of-plane deformations: Gaussian-like, fold-like and smoothing fold. For undeformed systems, the electronic properties are influenced by edges, shape and size. In fact, the triangular zigzag graphene flakes exhibit edge states at the Fermi energy, while localized states in the corners are observed in the case of triangular armchair flakes. On the other hand, the conductance for three-terminal undeformed triangular flake presents a similar behavior to the ballistic transport, while hexagonal flake systems are characterized by resonant states and extended bands for zigzag and armchair case, respectively. For deformed graphene flake systems, resonant levels are more impressive for hexagonal than triangular at lower energies. In triangular flakes, the electronic transport is more sensible to deformations extended to the leads. Finally, we study the effects of the sublattice asymmetry originated by a Gaussian-like deformation in the graphene sheet and graphene nanoribbons, on the adsorption of one hydrogen-like atom. It was shown that in graphene sheet one sublattice can be more energetically favorable for impurity adsorption than the other and that this feature can be controlled by varying the strain parameters, while in a graphene nanoribbons, absortion of impurities at the edges are more favourable, despite of the deformation.Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorFundação de Amparo à Pesquisa do Estado do Rio de JaneiroConselho Nacional de Desenvolvimento Científico e TecnológicoNeste trabalho estudamos os efeitos de deformações mecânicas fora do plano nas propriedades eletrônicas e de transporte de nanoestruturas particulares de grafeno. Especificamente, consideramos nanofitas de grafeno e aglomerados de grafeno na forma triangular e hexagonal, com bordas armchair e zigzag. Com este objetivo, consideramos uma aproximação Tight-binding de primeiros vizinhos e a teoria de elasticidade linear. Condutância e densidade de estados eletrônicos foram calculados usando-se o formalismo de Landauer-Buttiker e métodos recursivos de função de Green para os multiterminais do sistema. Para o caso de nanofitas armchair com deformação do tipo "fold", como a simetria de translação é preservada, a condutância ainda é marcada por uma sequência de platôs, de forma similar ao caso nas nanofitas "pristine". Encontramos aqui que o gap de energia pode ser modulado dramaticamente pela alteração dos parâmetros de deformação e que o comprimento da estrutura deformada tem um papel crucial na determinação deste gap e de seus valores máximos. Além disso, mostramos também que os resultados numéricos obtidos podem ser previstos analiticamente a partir da equação de Dirac para o sistema deformado. Sistemas de grafeno em forma de pequenos aglomerados foram estudados levando-se em conta tipos diferentes de deformações fora do plano, ou seja, consideramos tensões do tipo Gaussiana, do tipo "fold", ou ainda "fold"suavizados. No caso de sistemas não deformados, as propriedades eletrônicas destas estruturas são influenciadas pelas bordas, as formas dos aglomerados e de seus respectivos tamanhos. Por exemplo, aglomerados triangulares de grafeno de bordas zigzag exibem estados de borda na energia de Fermi, enquanto, estados localizados nos vertices destas estruturas são verificados para aglomerados triangulares de borda armchair. Por outro lado, a condutância dos aglomerados triangulares conectados à três terminais apresentam comportamentos similares ao transporte balístico, enquanto sistemas de aglomerados hexagonais são caracterizados por estados ressonantes à baixas energias e bandas estendidas para o caso de bordas zigzag e armchair, respectivamente. Para sistemas deformados, os níveis ressonantes são mais marcantes para aglomerados hexagonais do que para os triangulares à baixas energias. Observamos também que o transporte eletrônico em aglomerados triangulares é mais sensível à deformações que se estendem nos contatos. Finalmente estudamos os efeitos das assimetrias de subrede originadas pelas deformaçoes do tipo Gaussiana em folhas de grafeno sobre a adsorção de um átomo do tipo hidrogênio. Mostramos que na folha de grafeno uma subrede pode ser energeticamente mais favorável para a adsorção da impureza do que a outra e que esta propriedade pode ser controlada a partir da variação dos parâmetros da distorção (amplitude e extensão, por exemplo). Para o caso de nanofitas de grafeno a adsorção da impurezas nas bordas é mais favorável, apesar da presença da deformação na rede.NiteróiLatgé, AndreaLatgé, AndreaCapaz, RodrigoCampos, LeonardoCosta Junior, Antonio Tavares daTorres Montilla, Vanessa Carolina2018-04-17T18:07:25Z2018-04-17T18:07:25Z2017info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://app.uff.br/riuff/handle/1/6290Aluno de doutoradoopenAccesshttp://creativecommons.org/licenses/by-nc-nd/3.0/br/CC-BY-SAinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)instname:Universidade Federal Fluminense (UFF)instacron:UFF2020-07-27T17:11:50Zoai:app.uff.br:1/6290Repositório InstitucionalPUBhttps://app.uff.br/oai/requestriuff@id.uff.bropendoar:21202020-07-27T17:11:50Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)false
dc.title.none.fl_str_mv Study of transport properties in graphene nanostructures in the presence of deformations
title Study of transport properties in graphene nanostructures in the presence of deformations
spellingShingle Study of transport properties in graphene nanostructures in the presence of deformations
Torres Montilla, Vanessa Carolina
Deformation
Quantum transport
Graphene nanostructure
Electronic proprietaries
Deformação
Tunelamento (física)
Grafeno
Nanoestrutura
Deformações
Propriedades eletrônicas
Nanoestruturas de grafeno
Transporte eletrônico
title_short Study of transport properties in graphene nanostructures in the presence of deformations
title_full Study of transport properties in graphene nanostructures in the presence of deformations
title_fullStr Study of transport properties in graphene nanostructures in the presence of deformations
title_full_unstemmed Study of transport properties in graphene nanostructures in the presence of deformations
title_sort Study of transport properties in graphene nanostructures in the presence of deformations
author Torres Montilla, Vanessa Carolina
author_facet Torres Montilla, Vanessa Carolina
author_role author
dc.contributor.none.fl_str_mv Latgé, Andrea
Latgé, Andrea
Capaz, Rodrigo
Campos, Leonardo
Costa Junior, Antonio Tavares da
dc.contributor.author.fl_str_mv Torres Montilla, Vanessa Carolina
dc.subject.por.fl_str_mv Deformation
Quantum transport
Graphene nanostructure
Electronic proprietaries
Deformação
Tunelamento (física)
Grafeno
Nanoestrutura
Deformações
Propriedades eletrônicas
Nanoestruturas de grafeno
Transporte eletrônico
topic Deformation
Quantum transport
Graphene nanostructure
Electronic proprietaries
Deformação
Tunelamento (física)
Grafeno
Nanoestrutura
Deformações
Propriedades eletrônicas
Nanoestruturas de grafeno
Transporte eletrônico
description We study the effect of the out-of-plane deformations on the electronic and transport properties of particular graphene nanostructures. Specifically, we consider graphene nanoribbon, hexagonal and triangular graphene flakes, with armchair and zigzag edges. For this purpose, we considered a first neighbour tight-binding approach and the linear elasticity theory. The conductance and electronic density of state were carried out by using the Landauer-Büttiker formalism and recursive Green’s function method for a multiterminal system. For armchair graphene nanoribbons with fold-like deformation, as the translation symmetry is preserved, the conductance is still marked by a sequence of plateaux, similar to the case of pristine graphene nanoribbons. Here, we found that the energy gap can be drastically modulated by changing the deformation parameters, and that relative length of the deformed structure plays a key role in determining the energy gap and its maximum values. In addition, we show that the numerical results are analytically predicted by solving the Dirac equation for the strained system. Graphene flake systems were studied taking into account three types of mechanical out-of-plane deformations: Gaussian-like, fold-like and smoothing fold. For undeformed systems, the electronic properties are influenced by edges, shape and size. In fact, the triangular zigzag graphene flakes exhibit edge states at the Fermi energy, while localized states in the corners are observed in the case of triangular armchair flakes. On the other hand, the conductance for three-terminal undeformed triangular flake presents a similar behavior to the ballistic transport, while hexagonal flake systems are characterized by resonant states and extended bands for zigzag and armchair case, respectively. For deformed graphene flake systems, resonant levels are more impressive for hexagonal than triangular at lower energies. In triangular flakes, the electronic transport is more sensible to deformations extended to the leads. Finally, we study the effects of the sublattice asymmetry originated by a Gaussian-like deformation in the graphene sheet and graphene nanoribbons, on the adsorption of one hydrogen-like atom. It was shown that in graphene sheet one sublattice can be more energetically favorable for impurity adsorption than the other and that this feature can be controlled by varying the strain parameters, while in a graphene nanoribbons, absortion of impurities at the edges are more favourable, despite of the deformation.
publishDate 2017
dc.date.none.fl_str_mv 2017
2018-04-17T18:07:25Z
2018-04-17T18:07:25Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://app.uff.br/riuff/handle/1/6290
Aluno de doutorado
url https://app.uff.br/riuff/handle/1/6290
identifier_str_mv Aluno de doutorado
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv openAccess
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
CC-BY-SA
info:eu-repo/semantics/openAccess
rights_invalid_str_mv openAccess
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
CC-BY-SA
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Niterói
publisher.none.fl_str_mv Niterói
dc.source.none.fl_str_mv reponame:Repositório Institucional da Universidade Federal Fluminense (RIUFF)
instname:Universidade Federal Fluminense (UFF)
instacron:UFF
instname_str Universidade Federal Fluminense (UFF)
instacron_str UFF
institution UFF
reponame_str Repositório Institucional da Universidade Federal Fluminense (RIUFF)
collection Repositório Institucional da Universidade Federal Fluminense (RIUFF)
repository.name.fl_str_mv Repositório Institucional da Universidade Federal Fluminense (RIUFF) - Universidade Federal Fluminense (UFF)
repository.mail.fl_str_mv riuff@id.uff.br
_version_ 1807838767626584064