Investigating hierarchical temporal memory networks applied to dynamic branch prediction
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Trabalho de conclusão de curso |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFFS (Repositório Digital da UFFS) |
Texto Completo: | https://rd.uffs.edu.br/handle/prefix/3374 |
Resumo: | As a consequence of the high application of instruction-level parallelism techniques in modern processors, the branch prediction are a of study remains relevant after 40 years of research. This work applies neural networks based on the Hierarchical Temporal Memory (HTM) theory to the branch prediction task and explores their adequacy to the problem’s characteristics. More specifically, the problem is faced asa sequence prediction task and tackled by the HTM sequence memory. Four traditional branch prediction schemes adapted to operate with an HTM system and two variations of the previous designs were evaluated on a slice of the traces provided by the 4th Championship Branch Prediction contest. The leading result was achieved by the HTM predictor based on the g share branch predictor, that for 8 million instructions was able to improve them is prediction rate by 14.3% incomparison to it straditiona l2-bitcounters version when both used a 13-bithi storyl ength. However, high level so faliasing were found to prevent the HTM system to scale and compete again stlarger conventional branch predictors. |
id |
UFFS_3d2d18e9d0c0e4014e59a8cb3cb66442 |
---|---|
oai_identifier_str |
oai:rd.uffs.edu.br:prefix/3374 |
network_acronym_str |
UFFS |
network_name_str |
Repositório Institucional da UFFS (Repositório Digital da UFFS) |
repository_id_str |
3924 |
spelling |
Caimi, Luciano LoresKonflanz, Daniel Mello20192020-02-04T12:16:57Z20192020-02-04T12:16:57Z2019https://rd.uffs.edu.br/handle/prefix/3374As a consequence of the high application of instruction-level parallelism techniques in modern processors, the branch prediction are a of study remains relevant after 40 years of research. This work applies neural networks based on the Hierarchical Temporal Memory (HTM) theory to the branch prediction task and explores their adequacy to the problem’s characteristics. More specifically, the problem is faced asa sequence prediction task and tackled by the HTM sequence memory. Four traditional branch prediction schemes adapted to operate with an HTM system and two variations of the previous designs were evaluated on a slice of the traces provided by the 4th Championship Branch Prediction contest. The leading result was achieved by the HTM predictor based on the g share branch predictor, that for 8 million instructions was able to improve them is prediction rate by 14.3% incomparison to it straditiona l2-bitcounters version when both used a 13-bithi storyl ength. However, high level so faliasing were found to prevent the HTM system to scale and compete again stlarger conventional branch predictors.Submitted by Suelen Spindola Bilhar (suelen.bilhar@uffs.edu.br) on 2019-12-20T13:59:45Z No. of bitstreams: 1 KONFLANZ.pdf: 2627339 bytes, checksum: 883c8db9e9f7b562e38715ae625f0bcb (MD5)Approved for entry into archive by Franciele Scaglioni da Cruz (franciele.cruz@uffs.edu.br) on 2020-02-04T12:16:57Z (GMT) No. of bitstreams: 1 KONFLANZ.pdf: 2627339 bytes, checksum: 883c8db9e9f7b562e38715ae625f0bcb (MD5)Made available in DSpace on 2020-02-04T12:16:57Z (GMT). No. of bitstreams: 1 KONFLANZ.pdf: 2627339 bytes, checksum: 883c8db9e9f7b562e38715ae625f0bcb (MD5) Previous issue date: 2019engUniversidade Federal da Fronteira SulUFFSBrasilCampus ChapecóMemória ramRedes neuraisCiência da computaçãoInvestigating hierarchical temporal memory networks applied to dynamic branch predictioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/bachelorThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFFS (Repositório Digital da UFFS)instname:Universidade Federal Fronteira do Sul (UFFS)instacron:UFFSLICENSElicense.txtlicense.txttext/plain; charset=utf-81866https://rd.uffs.edu.br:8443/bitstream/prefix/3374/2/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD52ORIGINALKONFLANZ.pdfKONFLANZ.pdfapplication/pdf2627339https://rd.uffs.edu.br:8443/bitstream/prefix/3374/1/KONFLANZ.pdf883c8db9e9f7b562e38715ae625f0bcbMD51prefix/33742020-02-04 10:16:57.305oai:rd.uffs.edu.br:prefix/3374TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttps://rd.uffs.edu.br/oai/requestopendoar:39242020-02-04T12:16:57Repositório Institucional da UFFS (Repositório Digital da UFFS) - Universidade Federal Fronteira do Sul (UFFS)false |
dc.title.pt_BR.fl_str_mv |
Investigating hierarchical temporal memory networks applied to dynamic branch prediction |
title |
Investigating hierarchical temporal memory networks applied to dynamic branch prediction |
spellingShingle |
Investigating hierarchical temporal memory networks applied to dynamic branch prediction Konflanz, Daniel Mello Memória ram Redes neurais Ciência da computação |
title_short |
Investigating hierarchical temporal memory networks applied to dynamic branch prediction |
title_full |
Investigating hierarchical temporal memory networks applied to dynamic branch prediction |
title_fullStr |
Investigating hierarchical temporal memory networks applied to dynamic branch prediction |
title_full_unstemmed |
Investigating hierarchical temporal memory networks applied to dynamic branch prediction |
title_sort |
Investigating hierarchical temporal memory networks applied to dynamic branch prediction |
author |
Konflanz, Daniel Mello |
author_facet |
Konflanz, Daniel Mello |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Caimi, Luciano Lores |
dc.contributor.author.fl_str_mv |
Konflanz, Daniel Mello |
contributor_str_mv |
Caimi, Luciano Lores |
dc.subject.por.fl_str_mv |
Memória ram Redes neurais Ciência da computação |
topic |
Memória ram Redes neurais Ciência da computação |
description |
As a consequence of the high application of instruction-level parallelism techniques in modern processors, the branch prediction are a of study remains relevant after 40 years of research. This work applies neural networks based on the Hierarchical Temporal Memory (HTM) theory to the branch prediction task and explores their adequacy to the problem’s characteristics. More specifically, the problem is faced asa sequence prediction task and tackled by the HTM sequence memory. Four traditional branch prediction schemes adapted to operate with an HTM system and two variations of the previous designs were evaluated on a slice of the traces provided by the 4th Championship Branch Prediction contest. The leading result was achieved by the HTM predictor based on the g share branch predictor, that for 8 million instructions was able to improve them is prediction rate by 14.3% incomparison to it straditiona l2-bitcounters version when both used a 13-bithi storyl ength. However, high level so faliasing were found to prevent the HTM system to scale and compete again stlarger conventional branch predictors. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019 |
dc.date.available.fl_str_mv |
2019 2020-02-04T12:16:57Z |
dc.date.issued.fl_str_mv |
2019 |
dc.date.accessioned.fl_str_mv |
2020-02-04T12:16:57Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/bachelorThesis |
format |
bachelorThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://rd.uffs.edu.br/handle/prefix/3374 |
url |
https://rd.uffs.edu.br/handle/prefix/3374 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal da Fronteira Sul |
dc.publisher.initials.fl_str_mv |
UFFS |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Campus Chapecó |
publisher.none.fl_str_mv |
Universidade Federal da Fronteira Sul |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFFS (Repositório Digital da UFFS) instname:Universidade Federal Fronteira do Sul (UFFS) instacron:UFFS |
instname_str |
Universidade Federal Fronteira do Sul (UFFS) |
instacron_str |
UFFS |
institution |
UFFS |
reponame_str |
Repositório Institucional da UFFS (Repositório Digital da UFFS) |
collection |
Repositório Institucional da UFFS (Repositório Digital da UFFS) |
bitstream.url.fl_str_mv |
https://rd.uffs.edu.br:8443/bitstream/prefix/3374/2/license.txt https://rd.uffs.edu.br:8443/bitstream/prefix/3374/1/KONFLANZ.pdf |
bitstream.checksum.fl_str_mv |
43cd690d6a359e86c1fe3d5b7cba0c9b 883c8db9e9f7b562e38715ae625f0bcb |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFFS (Repositório Digital da UFFS) - Universidade Federal Fronteira do Sul (UFFS) |
repository.mail.fl_str_mv |
|
_version_ |
1809094616337612800 |