Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection

Detalhes bibliográficos
Autor(a) principal: Chaves, Daniel Bruno Resende
Data de Publicação: 2018
Outros Autores: Pascoal, Lívia Maia, Beltrão, Beatriz Amorim, Leandro, Tânia Alteniza, Nunes, Marília Mendes, Silva, Viviane Martins da, Lopes, Marcos Venícios de Oliveira
Tipo de documento: Artigo
Idioma: por
eng
Título da fonte: Revista Eletrônica de Enfermagem
Texto Completo: https://revistas.ufg.br/fen/article/view/45401
Resumo: The objective of the study was to verify defining characteristics with greater predictive power to aid in the classification of ineffective breathing pattern using classification trees in children with acute respiratory infections. A cross-sectional study was carried out in two pediatric hospitals with 249 children with acute respiratory infection. For data collection, a specific instrument developed for the study was used. Three induction algorithms were used to generate the trees: Chi-square Automatic Interaction Detection, Classification and Regression Trees, and Quick, Unbiased, Efficient Statistical Tree. Three trees were constructed to aid in the identification of ineffective breathing pattern. The classification trees generated present probabilities conditional to the occurrence of the diagnosis associated with dyspnea and changes in respiratory depth. Ineffective breathing pattern was present in 65.5% of the sample. Thus, the probability of occurrence of this diagnosis in children with acute respiratory infection was 100% with the presence of dyspnea and changes in respiratory depth.
id UFG-13_79421a2b8c91a5a4be9799dbe599de50
oai_identifier_str oai:ojs.revistas.ufg.br:article/45401
network_acronym_str UFG-13
network_name_str Revista Eletrônica de Enfermagem
repository_id_str
spelling Classification tree for identifying ineffective breathing pattern in children with acute respiratory infectionÁrvore de classificação para identificação de Padrão respiratório ineficaz em crianças com infecção respiratória agudaThe objective of the study was to verify defining characteristics with greater predictive power to aid in the classification of ineffective breathing pattern using classification trees in children with acute respiratory infections. A cross-sectional study was carried out in two pediatric hospitals with 249 children with acute respiratory infection. For data collection, a specific instrument developed for the study was used. Three induction algorithms were used to generate the trees: Chi-square Automatic Interaction Detection, Classification and Regression Trees, and Quick, Unbiased, Efficient Statistical Tree. Three trees were constructed to aid in the identification of ineffective breathing pattern. The classification trees generated present probabilities conditional to the occurrence of the diagnosis associated with dyspnea and changes in respiratory depth. Ineffective breathing pattern was present in 65.5% of the sample. Thus, the probability of occurrence of this diagnosis in children with acute respiratory infection was 100% with the presence of dyspnea and changes in respiratory depth.O estudo teve como objetivo verificar as características definidoras com melhor poder de predição para auxiliar na classificação de Padrão respiratório ineficaz, utilizando árvores de classificação, em crianças com infecção respiratória aguda. Estudo transversal, realizado em dois hospitais pediátricos juntamente a 249 crianças com infecção respiratória aguda. Para a coleta, foi utilizado um instrumento específico desenvolvido para o estudo. Empregaram-se três algoritmos de indução para a geração das árvores, CHi-square Automatic Interaction  Detection, Classification and Regression Treese Quick, Unbiased, Efficient Statistical Tree. Construíram-se três árvores para auxiliar na identificação de Padrão Respiratório ineficaz. As árvores de classificação geradas apresentam probabilidades condicionais à ocorrência do diagnóstico associada a dispneia e alterações na profundidade respiratória. Padrão respiratório ineficaz esteve presente 65,5% da amostra. Assim, a probabilidade da ocorrência do referido diagnóstico nas crianças com infecção respiratória aguda foi de 100% com a presença de dispneia e de alterações na profundidade respiratória.Faculdade de Enfermagem da UFG2018-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://revistas.ufg.br/fen/article/view/4540110.5216/ree.v20.45401Revista Eletrônica de Enfermagem; Vol. 20 (2018); v20a45Revista Eletrônica de Enfermagem; v. 20 (2018); v20a451518-1944reponame:Revista Eletrônica de Enfermageminstname:Universidade Federal de Goiás (UFG)instacron:UFGporenghttps://revistas.ufg.br/fen/article/view/45401/33267https://revistas.ufg.br/fen/article/view/45401/33268Copyright (c) 2018 Revista Eletrônica de Enfermagemhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessChaves, Daniel Bruno ResendePascoal, Lívia MaiaBeltrão, Beatriz AmorimLeandro, Tânia AltenizaNunes, Marília MendesSilva, Viviane Martins daLopes, Marcos Venícios de Oliveira2022-05-24T19:19:15Zoai:ojs.revistas.ufg.br:article/45401Revistahttps://revistas.ufg.br/fenPUBhttps://revistas.ufg.br/fen/oairee.fen@ufg.br1518-19441518-1944opendoar:2022-05-24T19:19:15Revista Eletrônica de Enfermagem - Universidade Federal de Goiás (UFG)false
dc.title.none.fl_str_mv Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection
Árvore de classificação para identificação de Padrão respiratório ineficaz em crianças com infecção respiratória aguda
title Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection
spellingShingle Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection
Chaves, Daniel Bruno Resende
title_short Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection
title_full Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection
title_fullStr Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection
title_full_unstemmed Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection
title_sort Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection
author Chaves, Daniel Bruno Resende
author_facet Chaves, Daniel Bruno Resende
Pascoal, Lívia Maia
Beltrão, Beatriz Amorim
Leandro, Tânia Alteniza
Nunes, Marília Mendes
Silva, Viviane Martins da
Lopes, Marcos Venícios de Oliveira
author_role author
author2 Pascoal, Lívia Maia
Beltrão, Beatriz Amorim
Leandro, Tânia Alteniza
Nunes, Marília Mendes
Silva, Viviane Martins da
Lopes, Marcos Venícios de Oliveira
author2_role author
author
author
author
author
author
dc.contributor.author.fl_str_mv Chaves, Daniel Bruno Resende
Pascoal, Lívia Maia
Beltrão, Beatriz Amorim
Leandro, Tânia Alteniza
Nunes, Marília Mendes
Silva, Viviane Martins da
Lopes, Marcos Venícios de Oliveira
description The objective of the study was to verify defining characteristics with greater predictive power to aid in the classification of ineffective breathing pattern using classification trees in children with acute respiratory infections. A cross-sectional study was carried out in two pediatric hospitals with 249 children with acute respiratory infection. For data collection, a specific instrument developed for the study was used. Three induction algorithms were used to generate the trees: Chi-square Automatic Interaction Detection, Classification and Regression Trees, and Quick, Unbiased, Efficient Statistical Tree. Three trees were constructed to aid in the identification of ineffective breathing pattern. The classification trees generated present probabilities conditional to the occurrence of the diagnosis associated with dyspnea and changes in respiratory depth. Ineffective breathing pattern was present in 65.5% of the sample. Thus, the probability of occurrence of this diagnosis in children with acute respiratory infection was 100% with the presence of dyspnea and changes in respiratory depth.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-31
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufg.br/fen/article/view/45401
10.5216/ree.v20.45401
url https://revistas.ufg.br/fen/article/view/45401
identifier_str_mv 10.5216/ree.v20.45401
dc.language.iso.fl_str_mv por
eng
language por
eng
dc.relation.none.fl_str_mv https://revistas.ufg.br/fen/article/view/45401/33267
https://revistas.ufg.br/fen/article/view/45401/33268
dc.rights.driver.fl_str_mv Copyright (c) 2018 Revista Eletrônica de Enfermagem
https://creativecommons.org/licenses/by/4.0
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2018 Revista Eletrônica de Enfermagem
https://creativecommons.org/licenses/by/4.0
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
application/pdf
dc.publisher.none.fl_str_mv Faculdade de Enfermagem da UFG
publisher.none.fl_str_mv Faculdade de Enfermagem da UFG
dc.source.none.fl_str_mv Revista Eletrônica de Enfermagem; Vol. 20 (2018); v20a45
Revista Eletrônica de Enfermagem; v. 20 (2018); v20a45
1518-1944
reponame:Revista Eletrônica de Enfermagem
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Revista Eletrônica de Enfermagem
collection Revista Eletrônica de Enfermagem
repository.name.fl_str_mv Revista Eletrônica de Enfermagem - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv ree.fen@ufg.br
_version_ 1797049170359484416