Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Outros Autores: | , , , , , |
Tipo de documento: | Artigo |
Idioma: | por eng |
Título da fonte: | Revista Eletrônica de Enfermagem |
Texto Completo: | https://revistas.ufg.br/fen/article/view/45401 |
Resumo: | The objective of the study was to verify defining characteristics with greater predictive power to aid in the classification of ineffective breathing pattern using classification trees in children with acute respiratory infections. A cross-sectional study was carried out in two pediatric hospitals with 249 children with acute respiratory infection. For data collection, a specific instrument developed for the study was used. Three induction algorithms were used to generate the trees: Chi-square Automatic Interaction Detection, Classification and Regression Trees, and Quick, Unbiased, Efficient Statistical Tree. Three trees were constructed to aid in the identification of ineffective breathing pattern. The classification trees generated present probabilities conditional to the occurrence of the diagnosis associated with dyspnea and changes in respiratory depth. Ineffective breathing pattern was present in 65.5% of the sample. Thus, the probability of occurrence of this diagnosis in children with acute respiratory infection was 100% with the presence of dyspnea and changes in respiratory depth. |
id |
UFG-13_79421a2b8c91a5a4be9799dbe599de50 |
---|---|
oai_identifier_str |
oai:ojs.revistas.ufg.br:article/45401 |
network_acronym_str |
UFG-13 |
network_name_str |
Revista Eletrônica de Enfermagem |
repository_id_str |
|
spelling |
Classification tree for identifying ineffective breathing pattern in children with acute respiratory infectionÁrvore de classificação para identificação de Padrão respiratório ineficaz em crianças com infecção respiratória agudaThe objective of the study was to verify defining characteristics with greater predictive power to aid in the classification of ineffective breathing pattern using classification trees in children with acute respiratory infections. A cross-sectional study was carried out in two pediatric hospitals with 249 children with acute respiratory infection. For data collection, a specific instrument developed for the study was used. Three induction algorithms were used to generate the trees: Chi-square Automatic Interaction Detection, Classification and Regression Trees, and Quick, Unbiased, Efficient Statistical Tree. Three trees were constructed to aid in the identification of ineffective breathing pattern. The classification trees generated present probabilities conditional to the occurrence of the diagnosis associated with dyspnea and changes in respiratory depth. Ineffective breathing pattern was present in 65.5% of the sample. Thus, the probability of occurrence of this diagnosis in children with acute respiratory infection was 100% with the presence of dyspnea and changes in respiratory depth.O estudo teve como objetivo verificar as características definidoras com melhor poder de predição para auxiliar na classificação de Padrão respiratório ineficaz, utilizando árvores de classificação, em crianças com infecção respiratória aguda. Estudo transversal, realizado em dois hospitais pediátricos juntamente a 249 crianças com infecção respiratória aguda. Para a coleta, foi utilizado um instrumento específico desenvolvido para o estudo. Empregaram-se três algoritmos de indução para a geração das árvores, CHi-square Automatic Interaction Detection, Classification and Regression Treese Quick, Unbiased, Efficient Statistical Tree. Construíram-se três árvores para auxiliar na identificação de Padrão Respiratório ineficaz. As árvores de classificação geradas apresentam probabilidades condicionais à ocorrência do diagnóstico associada a dispneia e alterações na profundidade respiratória. Padrão respiratório ineficaz esteve presente 65,5% da amostra. Assim, a probabilidade da ocorrência do referido diagnóstico nas crianças com infecção respiratória aguda foi de 100% com a presença de dispneia e de alterações na profundidade respiratória.Faculdade de Enfermagem da UFG2018-12-31info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionapplication/pdfapplication/pdfhttps://revistas.ufg.br/fen/article/view/4540110.5216/ree.v20.45401Revista Eletrônica de Enfermagem; Vol. 20 (2018); v20a45Revista Eletrônica de Enfermagem; v. 20 (2018); v20a451518-1944reponame:Revista Eletrônica de Enfermageminstname:Universidade Federal de Goiás (UFG)instacron:UFGporenghttps://revistas.ufg.br/fen/article/view/45401/33267https://revistas.ufg.br/fen/article/view/45401/33268Copyright (c) 2018 Revista Eletrônica de Enfermagemhttps://creativecommons.org/licenses/by/4.0info:eu-repo/semantics/openAccessChaves, Daniel Bruno ResendePascoal, Lívia MaiaBeltrão, Beatriz AmorimLeandro, Tânia AltenizaNunes, Marília MendesSilva, Viviane Martins daLopes, Marcos Venícios de Oliveira2022-05-24T19:19:15Zoai:ojs.revistas.ufg.br:article/45401Revistahttps://revistas.ufg.br/fenPUBhttps://revistas.ufg.br/fen/oairee.fen@ufg.br1518-19441518-1944opendoar:2022-05-24T19:19:15Revista Eletrônica de Enfermagem - Universidade Federal de Goiás (UFG)false |
dc.title.none.fl_str_mv |
Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection Árvore de classificação para identificação de Padrão respiratório ineficaz em crianças com infecção respiratória aguda |
title |
Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection |
spellingShingle |
Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection Chaves, Daniel Bruno Resende |
title_short |
Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection |
title_full |
Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection |
title_fullStr |
Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection |
title_full_unstemmed |
Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection |
title_sort |
Classification tree for identifying ineffective breathing pattern in children with acute respiratory infection |
author |
Chaves, Daniel Bruno Resende |
author_facet |
Chaves, Daniel Bruno Resende Pascoal, Lívia Maia Beltrão, Beatriz Amorim Leandro, Tânia Alteniza Nunes, Marília Mendes Silva, Viviane Martins da Lopes, Marcos Venícios de Oliveira |
author_role |
author |
author2 |
Pascoal, Lívia Maia Beltrão, Beatriz Amorim Leandro, Tânia Alteniza Nunes, Marília Mendes Silva, Viviane Martins da Lopes, Marcos Venícios de Oliveira |
author2_role |
author author author author author author |
dc.contributor.author.fl_str_mv |
Chaves, Daniel Bruno Resende Pascoal, Lívia Maia Beltrão, Beatriz Amorim Leandro, Tânia Alteniza Nunes, Marília Mendes Silva, Viviane Martins da Lopes, Marcos Venícios de Oliveira |
description |
The objective of the study was to verify defining characteristics with greater predictive power to aid in the classification of ineffective breathing pattern using classification trees in children with acute respiratory infections. A cross-sectional study was carried out in two pediatric hospitals with 249 children with acute respiratory infection. For data collection, a specific instrument developed for the study was used. Three induction algorithms were used to generate the trees: Chi-square Automatic Interaction Detection, Classification and Regression Trees, and Quick, Unbiased, Efficient Statistical Tree. Three trees were constructed to aid in the identification of ineffective breathing pattern. The classification trees generated present probabilities conditional to the occurrence of the diagnosis associated with dyspnea and changes in respiratory depth. Ineffective breathing pattern was present in 65.5% of the sample. Thus, the probability of occurrence of this diagnosis in children with acute respiratory infection was 100% with the presence of dyspnea and changes in respiratory depth. |
publishDate |
2018 |
dc.date.none.fl_str_mv |
2018-12-31 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufg.br/fen/article/view/45401 10.5216/ree.v20.45401 |
url |
https://revistas.ufg.br/fen/article/view/45401 |
identifier_str_mv |
10.5216/ree.v20.45401 |
dc.language.iso.fl_str_mv |
por eng |
language |
por eng |
dc.relation.none.fl_str_mv |
https://revistas.ufg.br/fen/article/view/45401/33267 https://revistas.ufg.br/fen/article/view/45401/33268 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2018 Revista Eletrônica de Enfermagem https://creativecommons.org/licenses/by/4.0 info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2018 Revista Eletrônica de Enfermagem https://creativecommons.org/licenses/by/4.0 |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf application/pdf |
dc.publisher.none.fl_str_mv |
Faculdade de Enfermagem da UFG |
publisher.none.fl_str_mv |
Faculdade de Enfermagem da UFG |
dc.source.none.fl_str_mv |
Revista Eletrônica de Enfermagem; Vol. 20 (2018); v20a45 Revista Eletrônica de Enfermagem; v. 20 (2018); v20a45 1518-1944 reponame:Revista Eletrônica de Enfermagem instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Revista Eletrônica de Enfermagem |
collection |
Revista Eletrônica de Enfermagem |
repository.name.fl_str_mv |
Revista Eletrônica de Enfermagem - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
ree.fen@ufg.br |
_version_ |
1797049170359484416 |