Componentes conexas de grupos em teorias NIP

Detalhes bibliográficos
Autor(a) principal: Ortiz, Marby Zuley Bolaños
Data de Publicação: 2017
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000bp7m
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/7089
Resumo: In this work, we estudied three special subgroups of bounded index in G: The intersection of subgroups definables of G, the small type-definable subgroup and the small invariant subgroup of G, called connected components of G and denoted G0G00 e G¥. We give an exposition of theorem of Gismatullim, where he proved the existence of G¥ in a theory with NIP.
id UFG-2_13b4ad40d69c98940f96c6b20623d53c
oai_identifier_str oai:repositorio.bc.ufg.br:tede/7089
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Lima, Aline de Souzahttp://lattes.cnpq.br/1518865173435209Ventura, Daniel Limahttp://lattes.cnpq.br/4443822193261575Melo, Emerson Ferreira deOliveira, Ricardo Nunes dehttp://lattes.cnpq.br/2170688093196897Ortiz, Marby Zuley Bolaños2017-04-06T12:58:41Z2017-03-30ORTIZ, M. Z. B. Componentes conexas de grupos em teorias NIP. 2017. 103 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/7089ark:/38995/001300000bp7mIn this work, we estudied three special subgroups of bounded index in G: The intersection of subgroups definables of G, the small type-definable subgroup and the small invariant subgroup of G, called connected components of G and denoted G0G00 e G¥. We give an exposition of theorem of Gismatullim, where he proved the existence of G¥ in a theory with NIP.Neste trabalho estudamos três subgrupos de um grupo G com índices limitados em G: A interseção de todos os subgrupos definíveis de G , o menor subgrupo tipo-definível e o menor subgrupo invariante de G, chamados componentes conexas de G, denotados respectivamente G0G00 e G¥. Apresentamos uma demonstração da existência de G¥ em uma teoria NIP, baseados na prova feita por Gismatullin em 2011.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-06T12:58:28Z No. of bitstreams: 2 Dissertação - Marby Zuley Bolaños Ortiz - 2017.pdf: 1515856 bytes, checksum: 739fa4d4c051b1c82f2f7ed1e4427c73 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-06T12:58:41Z (GMT) No. of bitstreams: 2 Dissertação - Marby Zuley Bolaños Ortiz - 2017.pdf: 1515856 bytes, checksum: 739fa4d4c051b1c82f2f7ed1e4427c73 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-04-06T12:58:41Z (GMT). No. of bitstreams: 2 Dissertação - Marby Zuley Bolaños Ortiz - 2017.pdf: 1515856 bytes, checksum: 739fa4d4c051b1c82f2f7ed1e4427c73 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-30Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessModelo monstro cGrupo de LascarComponente conexaTipo-definibilidadeMonster modelThe Lascar groupConnected componentCconnected componentMATEMATICA::ALGEBRAComponentes conexas de grupos em teorias NIPConnected componentes of groupd in NIP theoriesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-6383368357733941552-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertação - Marby Zuley Bolaños Ortiz - 2017.pdfDissertação - Marby Zuley Bolaños Ortiz - 2017.pdfapplication/pdf1515856http://repositorio.bc.ufg.br/tede/bitstreams/20f8a07e-e7bf-4799-aeb3-a3a9ccbadbce/download739fa4d4c051b1c82f2f7ed1e4427c73MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/a801c5e8-3204-415c-823a-049fc736236c/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/2a11bdf3-37b0-4e6b-9707-50a8b95abbab/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/11b9333b-5818-468b-b1bf-e4817582448e/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/b5d9ac10-d92f-408b-b332-3eed50123c5e/downloadbd3efa91386c1718a7f26a329fdcb468MD51tede/70892017-04-06 09:58:41.99http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/7089http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-04-06T12:58:41Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Componentes conexas de grupos em teorias NIP
dc.title.alternative.eng.fl_str_mv Connected componentes of groupd in NIP theories
title Componentes conexas de grupos em teorias NIP
spellingShingle Componentes conexas de grupos em teorias NIP
Ortiz, Marby Zuley Bolaños
Modelo monstro c
Grupo de Lascar
Componente conexa
Tipo-definibilidade
Monster model
The Lascar group
Connected component
Cconnected component
MATEMATICA::ALGEBRA
title_short Componentes conexas de grupos em teorias NIP
title_full Componentes conexas de grupos em teorias NIP
title_fullStr Componentes conexas de grupos em teorias NIP
title_full_unstemmed Componentes conexas de grupos em teorias NIP
title_sort Componentes conexas de grupos em teorias NIP
author Ortiz, Marby Zuley Bolaños
author_facet Ortiz, Marby Zuley Bolaños
author_role author
dc.contributor.advisor1.fl_str_mv Lima, Aline de Souza
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1518865173435209
dc.contributor.advisor-co1.fl_str_mv Ventura, Daniel Lima
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4443822193261575
dc.contributor.referee1.fl_str_mv Melo, Emerson Ferreira de
dc.contributor.referee2.fl_str_mv Oliveira, Ricardo Nunes de
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2170688093196897
dc.contributor.author.fl_str_mv Ortiz, Marby Zuley Bolaños
contributor_str_mv Lima, Aline de Souza
Ventura, Daniel Lima
Melo, Emerson Ferreira de
Oliveira, Ricardo Nunes de
dc.subject.por.fl_str_mv Modelo monstro c
Grupo de Lascar
Componente conexa
Tipo-definibilidade
topic Modelo monstro c
Grupo de Lascar
Componente conexa
Tipo-definibilidade
Monster model
The Lascar group
Connected component
Cconnected component
MATEMATICA::ALGEBRA
dc.subject.eng.fl_str_mv Monster model
The Lascar group
Connected component
Cconnected component
dc.subject.cnpq.fl_str_mv MATEMATICA::ALGEBRA
description In this work, we estudied three special subgroups of bounded index in G: The intersection of subgroups definables of G, the small type-definable subgroup and the small invariant subgroup of G, called connected components of G and denoted G0G00 e G¥. We give an exposition of theorem of Gismatullim, where he proved the existence of G¥ in a theory with NIP.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-04-06T12:58:41Z
dc.date.issued.fl_str_mv 2017-03-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ORTIZ, M. Z. B. Componentes conexas de grupos em teorias NIP. 2017. 103 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/7089
dc.identifier.dark.fl_str_mv ark:/38995/001300000bp7m
identifier_str_mv ORTIZ, M. Z. B. Componentes conexas de grupos em teorias NIP. 2017. 103 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.
ark:/38995/001300000bp7m
url http://repositorio.bc.ufg.br/tede/handle/tede/7089
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -6383368357733941552
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/20f8a07e-e7bf-4799-aeb3-a3a9ccbadbce/download
http://repositorio.bc.ufg.br/tede/bitstreams/a801c5e8-3204-415c-823a-049fc736236c/download
http://repositorio.bc.ufg.br/tede/bitstreams/2a11bdf3-37b0-4e6b-9707-50a8b95abbab/download
http://repositorio.bc.ufg.br/tede/bitstreams/11b9333b-5818-468b-b1bf-e4817582448e/download
http://repositorio.bc.ufg.br/tede/bitstreams/b5d9ac10-d92f-408b-b332-3eed50123c5e/download
bitstream.checksum.fl_str_mv 739fa4d4c051b1c82f2f7ed1e4427c73
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
bd3efa91386c1718a7f26a329fdcb468
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172624565665792