Componentes conexas de grupos em teorias NIP
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000bp7m |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/7089 |
Resumo: | In this work, we estudied three special subgroups of bounded index in G: The intersection of subgroups definables of G, the small type-definable subgroup and the small invariant subgroup of G, called connected components of G and denoted G0G00 e G¥. We give an exposition of theorem of Gismatullim, where he proved the existence of G¥ in a theory with NIP. |
id |
UFG-2_13b4ad40d69c98940f96c6b20623d53c |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/7089 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Lima, Aline de Souzahttp://lattes.cnpq.br/1518865173435209Ventura, Daniel Limahttp://lattes.cnpq.br/4443822193261575Melo, Emerson Ferreira deOliveira, Ricardo Nunes dehttp://lattes.cnpq.br/2170688093196897Ortiz, Marby Zuley Bolaños2017-04-06T12:58:41Z2017-03-30ORTIZ, M. Z. B. Componentes conexas de grupos em teorias NIP. 2017. 103 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/7089ark:/38995/001300000bp7mIn this work, we estudied three special subgroups of bounded index in G: The intersection of subgroups definables of G, the small type-definable subgroup and the small invariant subgroup of G, called connected components of G and denoted G0G00 e G¥. We give an exposition of theorem of Gismatullim, where he proved the existence of G¥ in a theory with NIP.Neste trabalho estudamos três subgrupos de um grupo G com índices limitados em G: A interseção de todos os subgrupos definíveis de G , o menor subgrupo tipo-definível e o menor subgrupo invariante de G, chamados componentes conexas de G, denotados respectivamente G0G00 e G¥. Apresentamos uma demonstração da existência de G¥ em uma teoria NIP, baseados na prova feita por Gismatullin em 2011.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-06T12:58:28Z No. of bitstreams: 2 Dissertação - Marby Zuley Bolaños Ortiz - 2017.pdf: 1515856 bytes, checksum: 739fa4d4c051b1c82f2f7ed1e4427c73 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-04-06T12:58:41Z (GMT) No. of bitstreams: 2 Dissertação - Marby Zuley Bolaños Ortiz - 2017.pdf: 1515856 bytes, checksum: 739fa4d4c051b1c82f2f7ed1e4427c73 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-04-06T12:58:41Z (GMT). No. of bitstreams: 2 Dissertação - Marby Zuley Bolaños Ortiz - 2017.pdf: 1515856 bytes, checksum: 739fa4d4c051b1c82f2f7ed1e4427c73 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-03-30Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessModelo monstro cGrupo de LascarComponente conexaTipo-definibilidadeMonster modelThe Lascar groupConnected componentCconnected componentMATEMATICA::ALGEBRAComponentes conexas de grupos em teorias NIPConnected componentes of groupd in NIP theoriesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-4268777512335152015-6383368357733941552-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertação - Marby Zuley Bolaños Ortiz - 2017.pdfDissertação - Marby Zuley Bolaños Ortiz - 2017.pdfapplication/pdf1515856http://repositorio.bc.ufg.br/tede/bitstreams/20f8a07e-e7bf-4799-aeb3-a3a9ccbadbce/download739fa4d4c051b1c82f2f7ed1e4427c73MD55CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/a801c5e8-3204-415c-823a-049fc736236c/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/2a11bdf3-37b0-4e6b-9707-50a8b95abbab/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/11b9333b-5818-468b-b1bf-e4817582448e/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/b5d9ac10-d92f-408b-b332-3eed50123c5e/downloadbd3efa91386c1718a7f26a329fdcb468MD51tede/70892017-04-06 09:58:41.99http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/7089http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-04-06T12:58:41Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Componentes conexas de grupos em teorias NIP |
dc.title.alternative.eng.fl_str_mv |
Connected componentes of groupd in NIP theories |
title |
Componentes conexas de grupos em teorias NIP |
spellingShingle |
Componentes conexas de grupos em teorias NIP Ortiz, Marby Zuley Bolaños Modelo monstro c Grupo de Lascar Componente conexa Tipo-definibilidade Monster model The Lascar group Connected component Cconnected component MATEMATICA::ALGEBRA |
title_short |
Componentes conexas de grupos em teorias NIP |
title_full |
Componentes conexas de grupos em teorias NIP |
title_fullStr |
Componentes conexas de grupos em teorias NIP |
title_full_unstemmed |
Componentes conexas de grupos em teorias NIP |
title_sort |
Componentes conexas de grupos em teorias NIP |
author |
Ortiz, Marby Zuley Bolaños |
author_facet |
Ortiz, Marby Zuley Bolaños |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Lima, Aline de Souza |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1518865173435209 |
dc.contributor.advisor-co1.fl_str_mv |
Ventura, Daniel Lima |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4443822193261575 |
dc.contributor.referee1.fl_str_mv |
Melo, Emerson Ferreira de |
dc.contributor.referee2.fl_str_mv |
Oliveira, Ricardo Nunes de |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/2170688093196897 |
dc.contributor.author.fl_str_mv |
Ortiz, Marby Zuley Bolaños |
contributor_str_mv |
Lima, Aline de Souza Ventura, Daniel Lima Melo, Emerson Ferreira de Oliveira, Ricardo Nunes de |
dc.subject.por.fl_str_mv |
Modelo monstro c Grupo de Lascar Componente conexa Tipo-definibilidade |
topic |
Modelo monstro c Grupo de Lascar Componente conexa Tipo-definibilidade Monster model The Lascar group Connected component Cconnected component MATEMATICA::ALGEBRA |
dc.subject.eng.fl_str_mv |
Monster model The Lascar group Connected component Cconnected component |
dc.subject.cnpq.fl_str_mv |
MATEMATICA::ALGEBRA |
description |
In this work, we estudied three special subgroups of bounded index in G: The intersection of subgroups definables of G, the small type-definable subgroup and the small invariant subgroup of G, called connected components of G and denoted G0G00 e G¥. We give an exposition of theorem of Gismatullim, where he proved the existence of G¥ in a theory with NIP. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-04-06T12:58:41Z |
dc.date.issued.fl_str_mv |
2017-03-30 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ORTIZ, M. Z. B. Componentes conexas de grupos em teorias NIP. 2017. 103 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/7089 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000bp7m |
identifier_str_mv |
ORTIZ, M. Z. B. Componentes conexas de grupos em teorias NIP. 2017. 103 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017. ark:/38995/001300000bp7m |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/7089 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-6383368357733941552 |
dc.relation.sponsorship.fl_str_mv |
-2555911436985713659 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/20f8a07e-e7bf-4799-aeb3-a3a9ccbadbce/download http://repositorio.bc.ufg.br/tede/bitstreams/a801c5e8-3204-415c-823a-049fc736236c/download http://repositorio.bc.ufg.br/tede/bitstreams/2a11bdf3-37b0-4e6b-9707-50a8b95abbab/download http://repositorio.bc.ufg.br/tede/bitstreams/11b9333b-5818-468b-b1bf-e4817582448e/download http://repositorio.bc.ufg.br/tede/bitstreams/b5d9ac10-d92f-408b-b332-3eed50123c5e/download |
bitstream.checksum.fl_str_mv |
739fa4d4c051b1c82f2f7ed1e4427c73 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172624565665792 |