Vibrações não lineares em tubulações com fluido em escoamento

Detalhes bibliográficos
Autor(a) principal: Prado, Joaquim Orlando
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000002t7j
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/6759
Resumo: In this work, the linear and nonlinear instability of pipes conveying static and pulsating fluid flow is analyzed. The dynamic equation of motion was derived for cantilevered and clamped-clamped pipes. For this purpose, the Euler Bernoulli beam theory and Hamilton’s principle were applied, resulting in a partial differential equation of second order in time. Thus, a model with four degrees of freedom, which satisfies the boundary condition, is used and, the Galekin method is applied to derive the set of coupled non linear ordinary equations of motion which are, in turn, solved by the fourth order Runge-Kutta method, and then some numerical results were obtained as Argand diagram, stability boudaries, time response, phase plane and, Poincaré section, through computational algorithms modeled in C++. These results revealed the importance of the nonlinear terms in the stability of the system, especially in the post-critical analysis, also revealed the existence of quasi-periodic motions, for the system subjected to a static flow and, chaotic motions for pulsating fluid flow
id UFG-2_21b5532e16add86ad7c51503f6e30ec1
oai_identifier_str oai:repositorio.bc.ufg.br:tede/6759
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Prado, Zenón José Guzmán Núñez delhttp://lattes.cnpq.br/7703344458057759Prado, Zenón José Guszmán Núñez delSilva, Frederico Martins Alves daBrito, José Luís Vital dePrado, Joaquim Orlando2017-01-18T10:31:58Z2013-06-21PRADO, Joaquim Orlando. Vibrações não lineares em tubulações com fluido em escoamento. 2013. 146 f. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de Goiás, Goiânia, 2013.http://repositorio.bc.ufg.br/tede/handle/tede/6759ark:/38995/0013000002t7jIn this work, the linear and nonlinear instability of pipes conveying static and pulsating fluid flow is analyzed. The dynamic equation of motion was derived for cantilevered and clamped-clamped pipes. For this purpose, the Euler Bernoulli beam theory and Hamilton’s principle were applied, resulting in a partial differential equation of second order in time. Thus, a model with four degrees of freedom, which satisfies the boundary condition, is used and, the Galekin method is applied to derive the set of coupled non linear ordinary equations of motion which are, in turn, solved by the fourth order Runge-Kutta method, and then some numerical results were obtained as Argand diagram, stability boudaries, time response, phase plane and, Poincaré section, through computational algorithms modeled in C++. These results revealed the importance of the nonlinear terms in the stability of the system, especially in the post-critical analysis, also revealed the existence of quasi-periodic motions, for the system subjected to a static flow and, chaotic motions for pulsating fluid flowNesta dissertação analisa-se a instabilidade linear e não linear de tubos com fluido interno em escoamento estático e pulsante. A equação de movimento dinâmico foi deduzida para tubos em balanço e biengastados. Para tanto, utilizou-se a teoria de vigas de Euler Bernoulli e o princípio variacional de Hamilton, resultado em uma equação diferencial parcial de segunda ordem no tempo. Tal equação foi discretizada, pelo método de Galerkin, em quatro equações diferenciais ordinárias, uma para cada grau de liberdade, em seguida transformadas em um conjunto de equações diferenciais de primeira ordem. Tais equações foram integradas pelo método de Runge-Kutta de quarta ordem e, posteriormente, foram obtidos alguns resultados numéricos como: diagrama de Argand, curvas de escape, diagrama de bifurcação, resposta no tempo, plano fase e, seção de Poincaré, através de algoritmos implementados computacionalmente na linguagem C++. Tais resultados revelaram a importância dos termos não lineares na estabilidade do sistema, especialmente na análise pós-crítica, revelaram também a existência de movimentos quase periódicos, para o sistema submetido a um fluxo estático e, caóticos para fluxo pulsante.Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2017-01-17T12:39:40Z No. of bitstreams: 3 Dissertação - Joaquim Orlando Parada (parte1) - 2013.pdf: 11591347 bytes, checksum: e970b2f0fffd5ccc2222bce05ea90d41 (MD5) Dissertação - Joaquim Orlando Parada (parte 2) - 2013.pdf: 18027973 bytes, checksum: 6bdbe04565ae04f1d810137fc59f37e2 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-01-18T10:31:58Z (GMT) No. of bitstreams: 3 Dissertação - Joaquim Orlando Parada (parte1) - 2013.pdf: 11591347 bytes, checksum: e970b2f0fffd5ccc2222bce05ea90d41 (MD5) Dissertação - Joaquim Orlando Parada (parte 2) - 2013.pdf: 18027973 bytes, checksum: 6bdbe04565ae04f1d810137fc59f37e2 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-01-18T10:31:58Z (GMT). No. of bitstreams: 3 Dissertação - Joaquim Orlando Parada (parte1) - 2013.pdf: 11591347 bytes, checksum: e970b2f0fffd5ccc2222bce05ea90d41 (MD5) Dissertação - Joaquim Orlando Parada (parte 2) - 2013.pdf: 18027973 bytes, checksum: 6bdbe04565ae04f1d810137fc59f37e2 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2013-06-21Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Engenharia Civil (EEC)UFGBrasilEscola de Engenharia Civil - EEC (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSistema não linearGalerkinCurvas de escapeDiagrama de bifurcaçãoMovimentos quase periódicosMovimentos caóticosNonlinear systemGalerkinStability boundariesBifurcation diagramQuasi-periodic motionsChaotic motionsENGENHARIA CIVIL::ESTRUTURASVibrações não lineares em tubulações com fluido em escoamentoNonlinear movement in fluid flow pipesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-653644648981767517560060060060072408725162631558579624141330135186212075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/5a50519e-33bd-4ca9-91b0-ee4a0dce8ff6/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/8bcd0fe1-29af-4556-8410-f92e10c533a8/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/fe909801-c03d-442d-ac00-e42f4a73b1e6/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/03439d6d-fcf5-49b2-a15a-e5e551e53042/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Joaquim Orlando Parada (parte1) - 2013.pdfDissertação - Joaquim Orlando Parada (parte1) - 2013.pdfapplication/pdf11591347http://repositorio.bc.ufg.br/tede/bitstreams/2bdaeaf0-e1df-48b1-b7f1-60952e19bd68/downloade970b2f0fffd5ccc2222bce05ea90d41MD55Dissertação - Joaquim Orlando Parada (parte 2) - 2013.pdfDissertação - Joaquim Orlando Parada (parte 2) - 2013.pdfapplication/pdf18027973http://repositorio.bc.ufg.br/tede/bitstreams/2bdffa97-3b55-4b08-8998-0f74cf48872f/download6bdbe04565ae04f1d810137fc59f37e2MD56tede/67592017-01-18 08:31:58.16http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/6759http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-01-18T10:31:58Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Vibrações não lineares em tubulações com fluido em escoamento
dc.title.alternative.eng.fl_str_mv Nonlinear movement in fluid flow pipes
title Vibrações não lineares em tubulações com fluido em escoamento
spellingShingle Vibrações não lineares em tubulações com fluido em escoamento
Prado, Joaquim Orlando
Sistema não linear
Galerkin
Curvas de escape
Diagrama de bifurcação
Movimentos quase periódicos
Movimentos caóticos
Nonlinear system
Galerkin
Stability boundaries
Bifurcation diagram
Quasi-periodic motions
Chaotic motions
ENGENHARIA CIVIL::ESTRUTURAS
title_short Vibrações não lineares em tubulações com fluido em escoamento
title_full Vibrações não lineares em tubulações com fluido em escoamento
title_fullStr Vibrações não lineares em tubulações com fluido em escoamento
title_full_unstemmed Vibrações não lineares em tubulações com fluido em escoamento
title_sort Vibrações não lineares em tubulações com fluido em escoamento
author Prado, Joaquim Orlando
author_facet Prado, Joaquim Orlando
author_role author
dc.contributor.advisor1.fl_str_mv Prado, Zenón José Guzmán Núñez del
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7703344458057759
dc.contributor.referee1.fl_str_mv Prado, Zenón José Guszmán Núñez del
dc.contributor.referee2.fl_str_mv Silva, Frederico Martins Alves da
dc.contributor.referee3.fl_str_mv Brito, José Luís Vital de
dc.contributor.author.fl_str_mv Prado, Joaquim Orlando
contributor_str_mv Prado, Zenón José Guzmán Núñez del
Prado, Zenón José Guszmán Núñez del
Silva, Frederico Martins Alves da
Brito, José Luís Vital de
dc.subject.por.fl_str_mv Sistema não linear
Galerkin
Curvas de escape
Diagrama de bifurcação
Movimentos quase periódicos
Movimentos caóticos
topic Sistema não linear
Galerkin
Curvas de escape
Diagrama de bifurcação
Movimentos quase periódicos
Movimentos caóticos
Nonlinear system
Galerkin
Stability boundaries
Bifurcation diagram
Quasi-periodic motions
Chaotic motions
ENGENHARIA CIVIL::ESTRUTURAS
dc.subject.eng.fl_str_mv Nonlinear system
Galerkin
Stability boundaries
Bifurcation diagram
Quasi-periodic motions
Chaotic motions
dc.subject.cnpq.fl_str_mv ENGENHARIA CIVIL::ESTRUTURAS
description In this work, the linear and nonlinear instability of pipes conveying static and pulsating fluid flow is analyzed. The dynamic equation of motion was derived for cantilevered and clamped-clamped pipes. For this purpose, the Euler Bernoulli beam theory and Hamilton’s principle were applied, resulting in a partial differential equation of second order in time. Thus, a model with four degrees of freedom, which satisfies the boundary condition, is used and, the Galekin method is applied to derive the set of coupled non linear ordinary equations of motion which are, in turn, solved by the fourth order Runge-Kutta method, and then some numerical results were obtained as Argand diagram, stability boudaries, time response, phase plane and, Poincaré section, through computational algorithms modeled in C++. These results revealed the importance of the nonlinear terms in the stability of the system, especially in the post-critical analysis, also revealed the existence of quasi-periodic motions, for the system subjected to a static flow and, chaotic motions for pulsating fluid flow
publishDate 2013
dc.date.issued.fl_str_mv 2013-06-21
dc.date.accessioned.fl_str_mv 2017-01-18T10:31:58Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PRADO, Joaquim Orlando. Vibrações não lineares em tubulações com fluido em escoamento. 2013. 146 f. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de Goiás, Goiânia, 2013.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/6759
dc.identifier.dark.fl_str_mv ark:/38995/0013000002t7j
identifier_str_mv PRADO, Joaquim Orlando. Vibrações não lineares em tubulações com fluido em escoamento. 2013. 146 f. Dissertação (Mestrado em Engenharia Civil) - Universidade Federal de Goiás, Goiânia, 2013.
ark:/38995/0013000002t7j
url http://repositorio.bc.ufg.br/tede/handle/tede/6759
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -6536446489817675175
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv 724087251626315585
dc.relation.cnpq.fl_str_mv 7962414133013518621
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Engenharia Civil (EEC)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola de Engenharia Civil - EEC (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/5a50519e-33bd-4ca9-91b0-ee4a0dce8ff6/download
http://repositorio.bc.ufg.br/tede/bitstreams/8bcd0fe1-29af-4556-8410-f92e10c533a8/download
http://repositorio.bc.ufg.br/tede/bitstreams/fe909801-c03d-442d-ac00-e42f4a73b1e6/download
http://repositorio.bc.ufg.br/tede/bitstreams/03439d6d-fcf5-49b2-a15a-e5e551e53042/download
http://repositorio.bc.ufg.br/tede/bitstreams/2bdaeaf0-e1df-48b1-b7f1-60952e19bd68/download
http://repositorio.bc.ufg.br/tede/bitstreams/2bdffa97-3b55-4b08-8998-0f74cf48872f/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
e970b2f0fffd5ccc2222bce05ea90d41
6bdbe04565ae04f1d810137fc59f37e2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172538878132224