Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos

Detalhes bibliográficos
Autor(a) principal: Tognini, Stefano Castro
Data de Publicação: 2012
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/3194
Resumo: The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s e↵ective temperature: an increase in the e↵ective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, finally, resulting in a major number of meson decays. This dependency between the muon flux and the atmosphere’s e↵ective temperature can be written as !Rμ/hRμi = ↵T!Teff/hTeff i, where the ↵T coefficient was measured by a set of experiments such as AMANDA, Borexino, MACRO and MINOS. This research will verify this temperature e↵ect by simulating the final muon flux produced by two di↵erent parameterizations of the atmospheric model. Each parameterization is described by a depth function X(h), which can be related to muon flux by the form !Rμ/Rμ = ↵X!X/X. This relation, associated with the MINOS experimental value for ↵T = 0.873±0.009, is used to define the relation between !X/X and !Teff/hTeff i. The simulation is done by using a set of high and low energy hadronic interaction and decay models called CORSIKA. All parameters were defined in order to fit the physical characteristics of the MINOS’ Far Detector and, by using its experimental value for ↵T , the results show that a variation of ⇠2.5% in X(h) implies in a variation of ⇠1% in Teff . Moreover, it is shown that the simulation is qualitatively in agreement with all physical behaviors expected from an increase in the value of the e↵ective temperature of the atmosphere. The values found for ↵X = 0.31+0.12 −0.16 and ↵X = 0.30+0.12 −0.16, which represent the results for the correlation with and without the selection cuts for the Far Detector, suggest that there is no dependency between the particles’ energy and its interaction probability within the investigated energy range.
id UFG-2_2f25d7978f9616f79c55df017e32e9b6
oai_identifier_str oai:repositorio.bc.ufg.br:tede/3194
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Gomes, Ricardo Avelinohttp://lattes.cnpq.br/6538341799051577Gomes, Ricardo AvelinoSantos, Edivaldo MouraBraghin, Fábio Luishttp://lattes.cnpq.br/9380493315501649Tognini, Stefano Castro2014-09-26T20:09:56Z2012-06-15TOGNINI, Stefano Castro. Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos. 2012. 89 f. Dissertação (Mestrado em Física) - Universidade Federal de Goiás, Goiânia, 2012.http://repositorio.bc.ufg.br/tede/handle/tede/3194The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s e↵ective temperature: an increase in the e↵ective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, finally, resulting in a major number of meson decays. This dependency between the muon flux and the atmosphere’s e↵ective temperature can be written as !Rμ/hRμi = ↵T!Teff/hTeff i, where the ↵T coefficient was measured by a set of experiments such as AMANDA, Borexino, MACRO and MINOS. This research will verify this temperature e↵ect by simulating the final muon flux produced by two di↵erent parameterizations of the atmospheric model. Each parameterization is described by a depth function X(h), which can be related to muon flux by the form !Rμ/Rμ = ↵X!X/X. This relation, associated with the MINOS experimental value for ↵T = 0.873±0.009, is used to define the relation between !X/X and !Teff/hTeff i. The simulation is done by using a set of high and low energy hadronic interaction and decay models called CORSIKA. All parameters were defined in order to fit the physical characteristics of the MINOS’ Far Detector and, by using its experimental value for ↵T , the results show that a variation of ⇠2.5% in X(h) implies in a variation of ⇠1% in Teff . Moreover, it is shown that the simulation is qualitatively in agreement with all physical behaviors expected from an increase in the value of the e↵ective temperature of the atmosphere. The values found for ↵X = 0.31+0.12 −0.16 and ↵X = 0.30+0.12 −0.16, which represent the results for the correlation with and without the selection cuts for the Far Detector, suggest that there is no dependency between the particles’ energy and its interaction probability within the investigated energy range.A colisão entre um raio cósmico e um núcleo da atmosfera produz um conjunto de partículas secundárias, as quais podem decair ou interagir com outro elemento da atmosfera. Essa sequência de eventos, onde uma partícula primária produz um conjunto de partículas secundárias ´e conhecida como chuveiro atmosférico extenso (EAS) e é composta pelas componentes muônica, hadrônica e eletromagnética. O fluxo da componente muˆonica – produzida principalmente por decaimentos de píons e káons (para escalas de 100 TeV, hádrons charmosos também contribuem) – tem uma dependência com a temperatura efetiva da atmosfera, onde aumentos de temperatura diminuem sua densidade, fato que resulta numa diminuição da probabilidade de interação e, consequentemente, no aumento da quantidade de decaimento dos mésons produzidos pelo EAS. Essa dependência entre a temperatura efetiva da atmosfera e o fluxo de múons – descrita na forma !Rμ/hRμi = ↵T!Teff/hTeff i – foi medida por diferentes experimentos, como o AMANDA, Borexino, MACRO e MINOS, todos apresentando valores semelhantes para o coeficiente ↵T . Esta pesquisa simula indiretamente este efeito de temperatura `a partir do estudo do fluxo de múons simulados utilizando diferentes parametrizações para o modelo atmosférico. As parametrizações são descritas por uma função X(h), o que possibilita uma rela¸c˜ao entre a varia¸c˜ao na parametrização atmosférica e a variação no fluxo de múons, na forma !Rμ/Rμ = ↵X!X/X. Utilizando os resultados simulados para ↵X e os resultados experimentais para ↵T , pode-se correlacionar !X/X e !Teff/hTeff i. As simulações são feitas utilizando o pacote CORSIKA, um conjunto de modelos de interações hadrônicas de altas e baixas energias e de decaimentos. Os parâmetros das simulações obedecem `as características físicas referentes ao Far Detector do experimento MINOS de forma que, `a partir do resultado obtido pelo experimento para ↵T – dado por ↵T = 0,873 ± 0,009 –, mostra-se que uma varia¸c˜ao de ⇠2,5% em X(h) leva a uma varia¸c˜ao de ⇠1% no valor de Teff . Além de encontrar a correlação entre a variação da parametrização atmosférica com a variação na temperatura efetiva das parametrizações, verificou-se de que a simulação atende, qualitativamente, `a todos os requisitos esperados fisicamente em caso de uma elevação na temperatura efetiva da alta atmosfera. Por fim, os valores encontrados para ↵X – dados por ↵X = 0,31+0,12 −0,16 e ↵X = 0,30+0,12 −0,16, para um fluxo de múons que não inclui e que inclui as seleções e cortes referentes `as características do experimento MINOS – sugerem que, dentro do intervalo de energia investigado, não existe uma dependência entre a energia da partícula e sua probabilidade de decaimento.Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-26T19:50:19Z No. of bitstreams: 2 2012_Dissertação_Stefano Castro Tognini.pdf: 11857604 bytes, checksum: 24dee87482cdfe63ba5f781324a1c42d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-26T20:09:56Z (GMT) No. of bitstreams: 2 2012_Dissertação_Stefano Castro Tognini.pdf: 11857604 bytes, checksum: 24dee87482cdfe63ba5f781324a1c42d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2014-09-26T20:09:56Z (GMT). No. of bitstreams: 2 2012_Dissertação_Stefano Castro Tognini.pdf: 11857604 bytes, checksum: 24dee87482cdfe63ba5f781324a1c42d (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2012-06-15Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/8840/2012_Disserta%c3%a7%c3%a3o_Stefano%20Castro%20Tognini.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Fisica (IF)UFGBrasilInstituto de Física - IF (RG)[1] Carlson P.; De Angelis, A. Nationalism and internationalism in science: the case of the discovery of cosmic rays. arXiv: 1012.5068v2. 28 de janeiro de 2011. [2] Adamson, P. et al. Observation of muon intensity variations by season with the MINOS Far Detector. Phys. Rev. D8, 012001. 2010. [3] Munakata, K. et al. Time variation of the cosmic ray muon flux in underground detectors and correlation with atmospheric temperature. J. Phys. Soc. Jpn. 60, p. 2808. 1991. [4] Bouchta, A., em nome da colabora¸c˜ao. Seasonal variation of the muon flux seen by AMANDA. 26th International Cosmic Ray Conference (ICRC 1999), realizada em Salt Lake City, Utah, EUA. [5] Bellini, G. et al. Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth. arXiv: 1202.6403. 2012. [6] Ambrosio, M. et al. Seasonal variation in the underground muon intensity as seen by MACRO. Astropart. Phys. 7, p. 109. 1997. [7] Osprey, S. et al. Sudden stratospheric warmings seen in MINOS deep underground muon data. Geophys. Res. Lett. 36, L05809. 2009. [8] Heck, D.; Pierog, T. Extensive Air Shower Simulation with CORSIKA: A User’s Guide (Version 6.99x, from August 8, 2011). Dispon´ıvel em: http: //www-ik.fzk.de/corsika/usersguide/usersguide.pdf REFERˆENCIAS BIBLIOGR´AFICAS 86 [9] Linsley, J. Private communications by M. Hillas. 1988. [10] Keilhauer, B. et al. Impact of varying atmospheric profiles on extensive air shower observation: atmospheric density and primary mass reconstruction. Astropart. Phys. 22, p. 249. 2004. [11] Wilczynska, B. et al. Importance of Atmospheric Model in Shower Reconstruction. Proc. 28th International Cosmic Ray Conference. Vol. 2, p. 571. Tsukuba, Jap˜ao. 2003. [12] Adamson, P. et al. The MINOS Detectors Technical Design Report. Fermilab Report NuMI-L-337. 1998. [13] National Geophysical Data Center. Acessado em 04 de abril de 2011. Dispon´ıvel em: http://www.ngdc.noaa.gov/geomag/ [14] Wilson, C.T.R. On the Ionisation of Atmospheric Air. Proc. Roy. Soc. of London. 68, 151. 1901. [15] Grashorn, E. W. Astroparticle Physics in the MINOS Far Detector. Tese de doutorado, Universidade de Minnesota, EUA. 2008. [16] Klapdor-Kleingrothaus, H.V.; Zuber, K. Particle Astrophysics. IOP Publishing Ltd. ISBN 0 7503 0403 0. 1997. [17] Gaisser, T. K. The cosmic-ray spectrum: from the knee to the ankle. Journal of Physics: Conference Series 47, p. 15. 2006. [18] Naganot, M. et al. Energy spectrum of primary cosmic rays above 1017 eV determined from extensive air shower experiments at Akeno. J. Phys. G: Nucl. Part. Phys. 18, 423. 1992. [19] Mostafa, M. Ultra High Energy Cosmic Rays. XXXI Physics in Collision, Vancouver, Canad´a. 2011. REFERˆENCIAS BIBLIOGR´AFICAS 87 [20] Zatsepin, G. T.; Kuz’min, V. A. Upper limit of the spectrum of cosmic rays. J. Exp. Theor. Phys. Lett. 4, p. 78. 1966. [21] Abbasi, R. U. et al. First Observation of the Greisen-Zatsepin-Kuzmin Suppresion. Phys. Rev. Lett. 100, 101101. 2008. [22] Abraham, J. et al. Observation of the suppression of the flux of cosmic rays above 4 ⇥ 1019 eV. Phys. Rev. Lett. 101, 061101. 2008. [23] Nakamura, K. et al. Particle Data Group. J. Phys. G37, 075021. 2010. [24] Curry, J. A.; Webster, P. J. Thermodynamics of Atmospheres and Oceans. Academic Press. ISBN 0-12-199570-4. 1999. [25] Marshall, J.; Plumb, R. A. Atmosphere, Ocean, and Climate Dynamics. An Introductory Text. Elsevier Academic Press, ISBN 978-0-12-558691-7. 2008. [26] Riehl, H. Introduction to the atmosphere. McGraw-Hill, Inc. Segunda edi¸c˜ao. 1972. [27] Heck, D.; Knapp, J.; Capdevielle, J. N.; Schatz, G.; Thouw, T. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers. Report FZKA 6019. 1998. [28] Marsaglia, G.; Zaman, A. Fast Uniform Random Number Generator. MATHLIB V113. CERN Program Library. 1989. [29] Lohmann, W. Kopp, R. Voss, R. CERN Report 85-03. 1985. [30] Adamson, P. et al. Charge-separated atmospheric neutrino-induced muons in the MINOS far detector. Phys. Rev. D75, 092003. 2007. [31] Adamson, P. et al. Measurement of the atmospheric muon charge ratio at TeV energies with the MINOS detector. Phys. Rev. D76, 052003. 2007. REFERˆENCIAS BIBLIOGR´AFICAS 88 [32] Adamson, P. et al. Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon. Astropart. Phys. 34, p. 457. 2011. [33] Adamson, P. CPT Conservation and Atmospheric Neutrinos in the MINOS Far Detector. Tese de doutorado, Universidade de Minnesota. 2006. [34] Livingston, M. S. Analysis of Charge-Exchange Injection for NAL. Fermilab Report No. FN-194. 1969. [35] Gomes, R. A. Uma investiga¸c˜ao sobre o decaimento semileptˆonico do cascata neutro no modo muˆonico e sua observa¸c˜ao. Tese de doutorado, Universidade Estadual de Campinas, S˜ao Paulo. 2005. [36] Raufer, T. M. A Study of Neutrino Oscillations in MINOS. Tese de doutorado, University College, Oxford. 2007. [37] Osiecki, T. H. A Search for Sterile Neutrinos in MINOS. Tese de doutorado, University of Texas at Austin. 2007. [38] Smith, C. B. Calibration of the MINOS Detectors and Extraction of Neutrino Oscillation Parameters. Tese de doutorado, University College London. 2002. [39] Adamson, P. et al. Measurement of the underground atmospheric muon charge ratio using the MINOS Near Detector. Phys. Rev. D83, 032011. 2011. [40] Hartnell, J. J. Measurement of the Calorimetric Energy Scale in MINOS. Tese de doutorado. Universidade de Oxford. 2005. [41] Schreiner, P. Far Detector cosmic muon surface energy calculations. MINOS Collaboration internal report. 2010.3162138865744262028600600600600-4029658853652049306-83271462965037459292075167498588264571http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessRaios cósmicosRadiação atmosféricaMúonsCIENCIAS EXATAS E DA TERRA::FISICAEfeitos de temperatura da atmosfera por simulação de múons de raios cósmicosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/b8740946-482c-4357-b3f7-931c44859877/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/564ec307-6ccb-46ba-81e9-5d4f00131307/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822302http://repositorio.bc.ufg.br/tede/bitstreams/da5d25ef-c50e-4d6f-a4f3-a220a9666772/download1e0094e9d8adcf16b18effef4ce7ed83MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/6c2d2ffa-a105-4e67-9733-9b1958ab8b57/download9da0b6dfac957114c6a7714714b86306MD54ORIGINAL2012_Dissertação_Stefano Castro Tognini.pdf2012_Dissertação_Stefano Castro Tognini.pdfDissertaçãoapplication/pdf11857604http://repositorio.bc.ufg.br/tede/bitstreams/d8d7ee91-29f2-4c58-b41d-fd3544941825/download24dee87482cdfe63ba5f781324a1c42dMD55TEXT2012_Dissertação_Stefano Castro Tognini.pdf.txt2012_Dissertação_Stefano Castro Tognini.pdf.txtExtracted Texttext/plain135991http://repositorio.bc.ufg.br/tede/bitstreams/4580f051-f5b8-4822-8574-3759c4feca63/download5e5cd1cd8bce5d4f85b6b564da428c64MD56THUMBNAIL2012_Dissertação_Stefano Castro Tognini.pdf.jpg2012_Dissertação_Stefano Castro Tognini.pdf.jpgGenerated Thumbnailimage/jpeg3046http://repositorio.bc.ufg.br/tede/bitstreams/164327ae-48e3-48e8-a801-1ed9ee6934e6/downloade12f580bbfec974bbdd5352e7092d305MD57tede/31942014-09-27 03:03:35.195http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/3194http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2014-09-27T06:03:35Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos
title Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos
spellingShingle Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos
Tognini, Stefano Castro
Raios cósmicos
Radiação atmosférica
Múons
CIENCIAS EXATAS E DA TERRA::FISICA
title_short Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos
title_full Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos
title_fullStr Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos
title_full_unstemmed Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos
title_sort Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos
author Tognini, Stefano Castro
author_facet Tognini, Stefano Castro
author_role author
dc.contributor.advisor1.fl_str_mv Gomes, Ricardo Avelino
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6538341799051577
dc.contributor.referee1.fl_str_mv Gomes, Ricardo Avelino
dc.contributor.referee2.fl_str_mv Santos, Edivaldo Moura
dc.contributor.referee3.fl_str_mv Braghin, Fábio Luis
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9380493315501649
dc.contributor.author.fl_str_mv Tognini, Stefano Castro
contributor_str_mv Gomes, Ricardo Avelino
Gomes, Ricardo Avelino
Santos, Edivaldo Moura
Braghin, Fábio Luis
dc.subject.por.fl_str_mv Raios cósmicos
Radiação atmosférica
Múons
topic Raios cósmicos
Radiação atmosférica
Múons
CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA
description The collision between a cosmic ray and an atmosphere nucleus produces a set of secondary particles, which will decay or interact with other atmosphere elements. This set of events produced a primary particle is known as an extensive air shower (EAS) and is composed by a muonic, a hadronic and an electromagnetic component. The muonic flux, produced mainly by pions and kaons decays, has a dependency with the atmosphere’s e↵ective temperature: an increase in the e↵ective temperature results in a lower density profile, which decreases the probability of pions and kaons to interact with the atmosphere and, finally, resulting in a major number of meson decays. This dependency between the muon flux and the atmosphere’s e↵ective temperature can be written as !Rμ/hRμi = ↵T!Teff/hTeff i, where the ↵T coefficient was measured by a set of experiments such as AMANDA, Borexino, MACRO and MINOS. This research will verify this temperature e↵ect by simulating the final muon flux produced by two di↵erent parameterizations of the atmospheric model. Each parameterization is described by a depth function X(h), which can be related to muon flux by the form !Rμ/Rμ = ↵X!X/X. This relation, associated with the MINOS experimental value for ↵T = 0.873±0.009, is used to define the relation between !X/X and !Teff/hTeff i. The simulation is done by using a set of high and low energy hadronic interaction and decay models called CORSIKA. All parameters were defined in order to fit the physical characteristics of the MINOS’ Far Detector and, by using its experimental value for ↵T , the results show that a variation of ⇠2.5% in X(h) implies in a variation of ⇠1% in Teff . Moreover, it is shown that the simulation is qualitatively in agreement with all physical behaviors expected from an increase in the value of the e↵ective temperature of the atmosphere. The values found for ↵X = 0.31+0.12 −0.16 and ↵X = 0.30+0.12 −0.16, which represent the results for the correlation with and without the selection cuts for the Far Detector, suggest that there is no dependency between the particles’ energy and its interaction probability within the investigated energy range.
publishDate 2012
dc.date.issued.fl_str_mv 2012-06-15
dc.date.accessioned.fl_str_mv 2014-09-26T20:09:56Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv TOGNINI, Stefano Castro. Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos. 2012. 89 f. Dissertação (Mestrado em Física) - Universidade Federal de Goiás, Goiânia, 2012.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/3194
identifier_str_mv TOGNINI, Stefano Castro. Efeitos de temperatura da atmosfera por simulação de múons de raios cósmicos. 2012. 89 f. Dissertação (Mestrado em Física) - Universidade Federal de Goiás, Goiânia, 2012.
url http://repositorio.bc.ufg.br/tede/handle/tede/3194
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 3162138865744262028
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4029658853652049306
dc.relation.cnpq.fl_str_mv -8327146296503745929
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.relation.references.por.fl_str_mv [1] Carlson P.; De Angelis, A. Nationalism and internationalism in science: the case of the discovery of cosmic rays. arXiv: 1012.5068v2. 28 de janeiro de 2011. [2] Adamson, P. et al. Observation of muon intensity variations by season with the MINOS Far Detector. Phys. Rev. D8, 012001. 2010. [3] Munakata, K. et al. Time variation of the cosmic ray muon flux in underground detectors and correlation with atmospheric temperature. J. Phys. Soc. Jpn. 60, p. 2808. 1991. [4] Bouchta, A., em nome da colabora¸c˜ao. Seasonal variation of the muon flux seen by AMANDA. 26th International Cosmic Ray Conference (ICRC 1999), realizada em Salt Lake City, Utah, EUA. [5] Bellini, G. et al. Cosmic-muon flux and annual modulation in Borexino at 3800 m water-equivalent depth. arXiv: 1202.6403. 2012. [6] Ambrosio, M. et al. Seasonal variation in the underground muon intensity as seen by MACRO. Astropart. Phys. 7, p. 109. 1997. [7] Osprey, S. et al. Sudden stratospheric warmings seen in MINOS deep underground muon data. Geophys. Res. Lett. 36, L05809. 2009. [8] Heck, D.; Pierog, T. Extensive Air Shower Simulation with CORSIKA: A User’s Guide (Version 6.99x, from August 8, 2011). Dispon´ıvel em: http: //www-ik.fzk.de/corsika/usersguide/usersguide.pdf REFERˆENCIAS BIBLIOGR´AFICAS 86 [9] Linsley, J. Private communications by M. Hillas. 1988. [10] Keilhauer, B. et al. Impact of varying atmospheric profiles on extensive air shower observation: atmospheric density and primary mass reconstruction. Astropart. Phys. 22, p. 249. 2004. [11] Wilczynska, B. et al. Importance of Atmospheric Model in Shower Reconstruction. Proc. 28th International Cosmic Ray Conference. Vol. 2, p. 571. Tsukuba, Jap˜ao. 2003. [12] Adamson, P. et al. The MINOS Detectors Technical Design Report. Fermilab Report NuMI-L-337. 1998. [13] National Geophysical Data Center. Acessado em 04 de abril de 2011. Dispon´ıvel em: http://www.ngdc.noaa.gov/geomag/ [14] Wilson, C.T.R. On the Ionisation of Atmospheric Air. Proc. Roy. Soc. of London. 68, 151. 1901. [15] Grashorn, E. W. Astroparticle Physics in the MINOS Far Detector. Tese de doutorado, Universidade de Minnesota, EUA. 2008. [16] Klapdor-Kleingrothaus, H.V.; Zuber, K. Particle Astrophysics. IOP Publishing Ltd. ISBN 0 7503 0403 0. 1997. [17] Gaisser, T. K. The cosmic-ray spectrum: from the knee to the ankle. Journal of Physics: Conference Series 47, p. 15. 2006. [18] Naganot, M. et al. Energy spectrum of primary cosmic rays above 1017 eV determined from extensive air shower experiments at Akeno. J. Phys. G: Nucl. Part. Phys. 18, 423. 1992. [19] Mostafa, M. Ultra High Energy Cosmic Rays. XXXI Physics in Collision, Vancouver, Canad´a. 2011. REFERˆENCIAS BIBLIOGR´AFICAS 87 [20] Zatsepin, G. T.; Kuz’min, V. A. Upper limit of the spectrum of cosmic rays. J. Exp. Theor. Phys. Lett. 4, p. 78. 1966. [21] Abbasi, R. U. et al. First Observation of the Greisen-Zatsepin-Kuzmin Suppresion. Phys. Rev. Lett. 100, 101101. 2008. [22] Abraham, J. et al. Observation of the suppression of the flux of cosmic rays above 4 ⇥ 1019 eV. Phys. Rev. Lett. 101, 061101. 2008. [23] Nakamura, K. et al. Particle Data Group. J. Phys. G37, 075021. 2010. [24] Curry, J. A.; Webster, P. J. Thermodynamics of Atmospheres and Oceans. Academic Press. ISBN 0-12-199570-4. 1999. [25] Marshall, J.; Plumb, R. A. Atmosphere, Ocean, and Climate Dynamics. An Introductory Text. Elsevier Academic Press, ISBN 978-0-12-558691-7. 2008. [26] Riehl, H. Introduction to the atmosphere. McGraw-Hill, Inc. Segunda edi¸c˜ao. 1972. [27] Heck, D.; Knapp, J.; Capdevielle, J. N.; Schatz, G.; Thouw, T. CORSIKA: A Monte Carlo Code to Simulate Extensive Air Showers. Report FZKA 6019. 1998. [28] Marsaglia, G.; Zaman, A. Fast Uniform Random Number Generator. MATHLIB V113. CERN Program Library. 1989. [29] Lohmann, W. Kopp, R. Voss, R. CERN Report 85-03. 1985. [30] Adamson, P. et al. Charge-separated atmospheric neutrino-induced muons in the MINOS far detector. Phys. Rev. D75, 092003. 2007. [31] Adamson, P. et al. Measurement of the atmospheric muon charge ratio at TeV energies with the MINOS detector. Phys. Rev. D76, 052003. 2007. REFERˆENCIAS BIBLIOGR´AFICAS 88 [32] Adamson, P. et al. Observation in the MINOS far detector of the shadowing of cosmic rays by the sun and moon. Astropart. Phys. 34, p. 457. 2011. [33] Adamson, P. CPT Conservation and Atmospheric Neutrinos in the MINOS Far Detector. Tese de doutorado, Universidade de Minnesota. 2006. [34] Livingston, M. S. Analysis of Charge-Exchange Injection for NAL. Fermilab Report No. FN-194. 1969. [35] Gomes, R. A. Uma investiga¸c˜ao sobre o decaimento semileptˆonico do cascata neutro no modo muˆonico e sua observa¸c˜ao. Tese de doutorado, Universidade Estadual de Campinas, S˜ao Paulo. 2005. [36] Raufer, T. M. A Study of Neutrino Oscillations in MINOS. Tese de doutorado, University College, Oxford. 2007. [37] Osiecki, T. H. A Search for Sterile Neutrinos in MINOS. Tese de doutorado, University of Texas at Austin. 2007. [38] Smith, C. B. Calibration of the MINOS Detectors and Extraction of Neutrino Oscillation Parameters. Tese de doutorado, University College London. 2002. [39] Adamson, P. et al. Measurement of the underground atmospheric muon charge ratio using the MINOS Near Detector. Phys. Rev. D83, 032011. 2011. [40] Hartnell, J. J. Measurement of the Calorimetric Energy Scale in MINOS. Tese de doutorado. Universidade de Oxford. 2005. [41] Schreiner, P. Far Detector cosmic muon surface energy calculations. MINOS Collaboration internal report. 2010.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Fisica (IF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Física - IF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/b8740946-482c-4357-b3f7-931c44859877/download
http://repositorio.bc.ufg.br/tede/bitstreams/564ec307-6ccb-46ba-81e9-5d4f00131307/download
http://repositorio.bc.ufg.br/tede/bitstreams/da5d25ef-c50e-4d6f-a4f3-a220a9666772/download
http://repositorio.bc.ufg.br/tede/bitstreams/6c2d2ffa-a105-4e67-9733-9b1958ab8b57/download
http://repositorio.bc.ufg.br/tede/bitstreams/d8d7ee91-29f2-4c58-b41d-fd3544941825/download
http://repositorio.bc.ufg.br/tede/bitstreams/4580f051-f5b8-4822-8574-3759c4feca63/download
http://repositorio.bc.ufg.br/tede/bitstreams/164327ae-48e3-48e8-a801-1ed9ee6934e6/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
1e0094e9d8adcf16b18effef4ce7ed83
9da0b6dfac957114c6a7714714b86306
24dee87482cdfe63ba5f781324a1c42d
5e5cd1cd8bce5d4f85b6b564da428c64
e12f580bbfec974bbdd5352e7092d305
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1798044333342982144