Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar

Detalhes bibliográficos
Autor(a) principal: Nogueira, Wallisson Calixto
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000268m
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/11853
Resumo: Modern Power Systems must deal with high levels of uncertainty in their planning and operation, these uncertainties are mainly due to variations in loads and distributed generation introduced by new technologies. This scenario brings new challenges for system planners and operators who need new tools to carry out more assertive analysis of the state of the network. This work presents an optimization methodology capable of considering uncertainties in the problem of sizing and sitting distributed generation in the networks. The proposed methodology uses the interval power flow (ILF) in order to add uncertainties to the combinatorial optimization problem that is solved through the meta-heuristics Symbiotic Organism Search (SOS) and Particle Swarm Optimization (PSO) for performance comparison purposes. The addition of uncertainties by ILF is validated by the probabilistic power flow (PLF) solved by Monte Carlo Simulation (MCS). This methodology was implemented in Python®, and was applied in the IEEE 33-bus, IEEE 34-bus and IEEE 69-bus test networks where distributed generation sizing and sitting problems were solved in order to minimize technical losses and to improve the voltage levels of the network. For the addition of uncertainties, the results obtained from the proposed ILF in the tested networks are compatible with those obtained by the PLF, thus showing the robustness and applicability of the proposed method. For the solution of the optimization problem, the SOS meta-heuristic proved to be robust, since it was able to find the best solutions that present the lowest losses, keeping the voltage levels regulated to the predetermined levels. On the other hand, the PSO meta-heuristic presents less satisfactory results, because for all the systems tested, the solution has a lower quality than that found by SOS, thus showing that the PSO algorithm presents difficulties to escape the minimum locations found during the simulation.
id UFG-2_300b7f8d7f78335518d0c2bc435b9c15
oai_identifier_str oai:repositorio.bc.ufg.br:tede/11853
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Garcés Negrete, Lina Paolahttp://lattes.cnpq.br/3707701912481754Garcés Negrete, Lina PaolaBrigatto, Gelson Antônio AndreaBelati, Edmarcio Antoniohttp://lattes.cnpq.br/5459071855563962Nogueira, Wallisson Calixto2022-01-19T12:38:33Z2022-01-19T12:38:33Z2021-11-30NOGUEIRA, W. C. Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar. 2021. 118 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11853ark:/38995/001300000268mModern Power Systems must deal with high levels of uncertainty in their planning and operation, these uncertainties are mainly due to variations in loads and distributed generation introduced by new technologies. This scenario brings new challenges for system planners and operators who need new tools to carry out more assertive analysis of the state of the network. This work presents an optimization methodology capable of considering uncertainties in the problem of sizing and sitting distributed generation in the networks. The proposed methodology uses the interval power flow (ILF) in order to add uncertainties to the combinatorial optimization problem that is solved through the meta-heuristics Symbiotic Organism Search (SOS) and Particle Swarm Optimization (PSO) for performance comparison purposes. The addition of uncertainties by ILF is validated by the probabilistic power flow (PLF) solved by Monte Carlo Simulation (MCS). This methodology was implemented in Python®, and was applied in the IEEE 33-bus, IEEE 34-bus and IEEE 69-bus test networks where distributed generation sizing and sitting problems were solved in order to minimize technical losses and to improve the voltage levels of the network. For the addition of uncertainties, the results obtained from the proposed ILF in the tested networks are compatible with those obtained by the PLF, thus showing the robustness and applicability of the proposed method. For the solution of the optimization problem, the SOS meta-heuristic proved to be robust, since it was able to find the best solutions that present the lowest losses, keeping the voltage levels regulated to the predetermined levels. On the other hand, the PSO meta-heuristic presents less satisfactory results, because for all the systems tested, the solution has a lower quality than that found by SOS, thus showing that the PSO algorithm presents difficulties to escape the minimum locations found during the simulation.Sistemas de Energia modernos devem lidar com altos níveis de incerteza no seu planejamento e operação, essas incertezas são devidas principalmente às variações nas cargas e na geração distribuída introduzida por novas tecnologias. Esse cenário traz novos desafios para os planejadores e operadores dos sistemas que precisam de novas ferramentas para realizar análises mais assertivas do estado da rede. Este trabalho apresenta uma metodologia de otimização capaz de considerar incertezas no problema de alocação e dimensionamento de geração distribuída em redes de distribuição de energia elétrica. A metodologia proposta utiliza o fluxo de potência intervalar (FPI) com o intuito de adicionar as incertezas no problema de otimização combinatória que é resolvido através das meta-heurísticas Symbiotic Organism Search (SOS) e Particle Swarm Optimization (PSO) para fins de comparação de desempenho. A adição de incertezas pelo FPI é validada pelo fluxo de potência probabilístico (FPP) resolvido através da Simulação de Monte Carlo (SMC). Essa metodologia foi implementada em Python®, e foi aplicada nas redes de teste IEEE 33-bus, IEEE 34-bus e IEEE 69-bus onde foram solucionados problemas de alocação e dimensionamento de geração distribuída visando a minimização das perdas técnicas e a regulação dos níveis de tensão da rede. Para a adição das incertezas, os resultados obtidos do FPI proposto nas redes testadas são compatíveis com os obtidos pelo FPP, evidenciando assim a robustez e aplicabilidade do método proposto. Para a solução do problema de otimização, a meta-heurística SOS mostrou-se robusta, uma vez que foi capaz de encontrar as melhores soluções que apresentam as menores perdas, mantendo os níveis de tensão regulados aos níveis pré-determinados. Já a meta-heurística PSO apresenta resultados menos satisfatórios, pois para todos os sistemas testados, a solução apresenta menor qualidade que aquela encontrada pelo SOS mostrando, dessa forma, que o algoritmo PSO apresenta dificuldades para escapar dos mínimos locais encontrados durante a simulação.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2022-01-18T13:32:47Z No. of bitstreams: 2 Dissertação - Wallisson Calixto Nogueira - 2021.pdf: 2628258 bytes, checksum: e41a46e931215cde03c87d09914b71d2 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2022-01-19T12:38:33Z (GMT) No. of bitstreams: 2 Dissertação - Wallisson Calixto Nogueira - 2021.pdf: 2628258 bytes, checksum: e41a46e931215cde03c87d09914b71d2 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2022-01-19T12:38:33Z (GMT). No. of bitstreams: 2 Dissertação - Wallisson Calixto Nogueira - 2021.pdf: 2628258 bytes, checksum: e41a46e931215cde03c87d09914b71d2 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2021-11-30porUniversidade Federal de GoiásPrograma de Pós-graduação em Engenharia Elétrica e da Computação (EMC)UFGBrasilEscola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessOtimizaçãoIncertezasFluxo de potência intervalarOptimizationUncertaintyInterval load flowENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIAAlocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalarOptimal sizing and sitting of distributed generation using interval load flowinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis495005005004439reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/125ea675-9bb0-4605-b420-82ef54105002/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/bb3ed65f-20ee-4fb7-899f-7eae2dbf7c5a/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALDissertação - Wallisson Calixto Nogueira - 2021.pdfDissertação - Wallisson Calixto Nogueira - 2021.pdfapplication/pdf2628258http://repositorio.bc.ufg.br/tede/bitstreams/4395eecb-71a7-4240-b834-c26ff9330119/downloade41a46e931215cde03c87d09914b71d2MD53tede/118532023-02-09 12:24:46.62http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11853http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2023-02-09T15:24:46Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar
dc.title.alternative.eng.fl_str_mv Optimal sizing and sitting of distributed generation using interval load flow
title Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar
spellingShingle Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar
Nogueira, Wallisson Calixto
Otimização
Incertezas
Fluxo de potência intervalar
Optimization
Uncertainty
Interval load flow
ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA
title_short Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar
title_full Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar
title_fullStr Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar
title_full_unstemmed Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar
title_sort Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar
author Nogueira, Wallisson Calixto
author_facet Nogueira, Wallisson Calixto
author_role author
dc.contributor.advisor1.fl_str_mv Garcés Negrete, Lina Paola
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3707701912481754
dc.contributor.referee1.fl_str_mv Garcés Negrete, Lina Paola
dc.contributor.referee2.fl_str_mv Brigatto, Gelson Antônio Andrea
dc.contributor.referee3.fl_str_mv Belati, Edmarcio Antonio
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5459071855563962
dc.contributor.author.fl_str_mv Nogueira, Wallisson Calixto
contributor_str_mv Garcés Negrete, Lina Paola
Garcés Negrete, Lina Paola
Brigatto, Gelson Antônio Andrea
Belati, Edmarcio Antonio
dc.subject.por.fl_str_mv Otimização
Incertezas
Fluxo de potência intervalar
topic Otimização
Incertezas
Fluxo de potência intervalar
Optimization
Uncertainty
Interval load flow
ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA
dc.subject.eng.fl_str_mv Optimization
Uncertainty
Interval load flow
dc.subject.cnpq.fl_str_mv ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA
description Modern Power Systems must deal with high levels of uncertainty in their planning and operation, these uncertainties are mainly due to variations in loads and distributed generation introduced by new technologies. This scenario brings new challenges for system planners and operators who need new tools to carry out more assertive analysis of the state of the network. This work presents an optimization methodology capable of considering uncertainties in the problem of sizing and sitting distributed generation in the networks. The proposed methodology uses the interval power flow (ILF) in order to add uncertainties to the combinatorial optimization problem that is solved through the meta-heuristics Symbiotic Organism Search (SOS) and Particle Swarm Optimization (PSO) for performance comparison purposes. The addition of uncertainties by ILF is validated by the probabilistic power flow (PLF) solved by Monte Carlo Simulation (MCS). This methodology was implemented in Python®, and was applied in the IEEE 33-bus, IEEE 34-bus and IEEE 69-bus test networks where distributed generation sizing and sitting problems were solved in order to minimize technical losses and to improve the voltage levels of the network. For the addition of uncertainties, the results obtained from the proposed ILF in the tested networks are compatible with those obtained by the PLF, thus showing the robustness and applicability of the proposed method. For the solution of the optimization problem, the SOS meta-heuristic proved to be robust, since it was able to find the best solutions that present the lowest losses, keeping the voltage levels regulated to the predetermined levels. On the other hand, the PSO meta-heuristic presents less satisfactory results, because for all the systems tested, the solution has a lower quality than that found by SOS, thus showing that the PSO algorithm presents difficulties to escape the minimum locations found during the simulation.
publishDate 2021
dc.date.issued.fl_str_mv 2021-11-30
dc.date.accessioned.fl_str_mv 2022-01-19T12:38:33Z
dc.date.available.fl_str_mv 2022-01-19T12:38:33Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv NOGUEIRA, W. C. Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar. 2021. 118 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2021.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/11853
dc.identifier.dark.fl_str_mv ark:/38995/001300000268m
identifier_str_mv NOGUEIRA, W. C. Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar. 2021. 118 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2021.
ark:/38995/001300000268m
url http://repositorio.bc.ufg.br/tede/handle/tede/11853
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 49
dc.relation.confidence.fl_str_mv 500
500
500
dc.relation.department.fl_str_mv 4
dc.relation.cnpq.fl_str_mv 439
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/125ea675-9bb0-4605-b420-82ef54105002/download
http://repositorio.bc.ufg.br/tede/bitstreams/bb3ed65f-20ee-4fb7-899f-7eae2dbf7c5a/download
http://repositorio.bc.ufg.br/tede/bitstreams/4395eecb-71a7-4240-b834-c26ff9330119/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
e41a46e931215cde03c87d09914b71d2
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172531739426816