Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000268m |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/11853 |
Resumo: | Modern Power Systems must deal with high levels of uncertainty in their planning and operation, these uncertainties are mainly due to variations in loads and distributed generation introduced by new technologies. This scenario brings new challenges for system planners and operators who need new tools to carry out more assertive analysis of the state of the network. This work presents an optimization methodology capable of considering uncertainties in the problem of sizing and sitting distributed generation in the networks. The proposed methodology uses the interval power flow (ILF) in order to add uncertainties to the combinatorial optimization problem that is solved through the meta-heuristics Symbiotic Organism Search (SOS) and Particle Swarm Optimization (PSO) for performance comparison purposes. The addition of uncertainties by ILF is validated by the probabilistic power flow (PLF) solved by Monte Carlo Simulation (MCS). This methodology was implemented in Python®, and was applied in the IEEE 33-bus, IEEE 34-bus and IEEE 69-bus test networks where distributed generation sizing and sitting problems were solved in order to minimize technical losses and to improve the voltage levels of the network. For the addition of uncertainties, the results obtained from the proposed ILF in the tested networks are compatible with those obtained by the PLF, thus showing the robustness and applicability of the proposed method. For the solution of the optimization problem, the SOS meta-heuristic proved to be robust, since it was able to find the best solutions that present the lowest losses, keeping the voltage levels regulated to the predetermined levels. On the other hand, the PSO meta-heuristic presents less satisfactory results, because for all the systems tested, the solution has a lower quality than that found by SOS, thus showing that the PSO algorithm presents difficulties to escape the minimum locations found during the simulation. |
id |
UFG-2_300b7f8d7f78335518d0c2bc435b9c15 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/11853 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Garcés Negrete, Lina Paolahttp://lattes.cnpq.br/3707701912481754Garcés Negrete, Lina PaolaBrigatto, Gelson Antônio AndreaBelati, Edmarcio Antoniohttp://lattes.cnpq.br/5459071855563962Nogueira, Wallisson Calixto2022-01-19T12:38:33Z2022-01-19T12:38:33Z2021-11-30NOGUEIRA, W. C. Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar. 2021. 118 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11853ark:/38995/001300000268mModern Power Systems must deal with high levels of uncertainty in their planning and operation, these uncertainties are mainly due to variations in loads and distributed generation introduced by new technologies. This scenario brings new challenges for system planners and operators who need new tools to carry out more assertive analysis of the state of the network. This work presents an optimization methodology capable of considering uncertainties in the problem of sizing and sitting distributed generation in the networks. The proposed methodology uses the interval power flow (ILF) in order to add uncertainties to the combinatorial optimization problem that is solved through the meta-heuristics Symbiotic Organism Search (SOS) and Particle Swarm Optimization (PSO) for performance comparison purposes. The addition of uncertainties by ILF is validated by the probabilistic power flow (PLF) solved by Monte Carlo Simulation (MCS). This methodology was implemented in Python®, and was applied in the IEEE 33-bus, IEEE 34-bus and IEEE 69-bus test networks where distributed generation sizing and sitting problems were solved in order to minimize technical losses and to improve the voltage levels of the network. For the addition of uncertainties, the results obtained from the proposed ILF in the tested networks are compatible with those obtained by the PLF, thus showing the robustness and applicability of the proposed method. For the solution of the optimization problem, the SOS meta-heuristic proved to be robust, since it was able to find the best solutions that present the lowest losses, keeping the voltage levels regulated to the predetermined levels. On the other hand, the PSO meta-heuristic presents less satisfactory results, because for all the systems tested, the solution has a lower quality than that found by SOS, thus showing that the PSO algorithm presents difficulties to escape the minimum locations found during the simulation.Sistemas de Energia modernos devem lidar com altos níveis de incerteza no seu planejamento e operação, essas incertezas são devidas principalmente às variações nas cargas e na geração distribuída introduzida por novas tecnologias. Esse cenário traz novos desafios para os planejadores e operadores dos sistemas que precisam de novas ferramentas para realizar análises mais assertivas do estado da rede. Este trabalho apresenta uma metodologia de otimização capaz de considerar incertezas no problema de alocação e dimensionamento de geração distribuída em redes de distribuição de energia elétrica. A metodologia proposta utiliza o fluxo de potência intervalar (FPI) com o intuito de adicionar as incertezas no problema de otimização combinatória que é resolvido através das meta-heurísticas Symbiotic Organism Search (SOS) e Particle Swarm Optimization (PSO) para fins de comparação de desempenho. A adição de incertezas pelo FPI é validada pelo fluxo de potência probabilístico (FPP) resolvido através da Simulação de Monte Carlo (SMC). Essa metodologia foi implementada em Python®, e foi aplicada nas redes de teste IEEE 33-bus, IEEE 34-bus e IEEE 69-bus onde foram solucionados problemas de alocação e dimensionamento de geração distribuída visando a minimização das perdas técnicas e a regulação dos níveis de tensão da rede. Para a adição das incertezas, os resultados obtidos do FPI proposto nas redes testadas são compatíveis com os obtidos pelo FPP, evidenciando assim a robustez e aplicabilidade do método proposto. Para a solução do problema de otimização, a meta-heurística SOS mostrou-se robusta, uma vez que foi capaz de encontrar as melhores soluções que apresentam as menores perdas, mantendo os níveis de tensão regulados aos níveis pré-determinados. Já a meta-heurística PSO apresenta resultados menos satisfatórios, pois para todos os sistemas testados, a solução apresenta menor qualidade que aquela encontrada pelo SOS mostrando, dessa forma, que o algoritmo PSO apresenta dificuldades para escapar dos mínimos locais encontrados durante a simulação.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2022-01-18T13:32:47Z No. of bitstreams: 2 Dissertação - Wallisson Calixto Nogueira - 2021.pdf: 2628258 bytes, checksum: e41a46e931215cde03c87d09914b71d2 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2022-01-19T12:38:33Z (GMT) No. of bitstreams: 2 Dissertação - Wallisson Calixto Nogueira - 2021.pdf: 2628258 bytes, checksum: e41a46e931215cde03c87d09914b71d2 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2022-01-19T12:38:33Z (GMT). No. of bitstreams: 2 Dissertação - Wallisson Calixto Nogueira - 2021.pdf: 2628258 bytes, checksum: e41a46e931215cde03c87d09914b71d2 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2021-11-30porUniversidade Federal de GoiásPrograma de Pós-graduação em Engenharia Elétrica e da Computação (EMC)UFGBrasilEscola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessOtimizaçãoIncertezasFluxo de potência intervalarOptimizationUncertaintyInterval load flowENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIAAlocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalarOptimal sizing and sitting of distributed generation using interval load flowinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis495005005004439reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/125ea675-9bb0-4605-b420-82ef54105002/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/bb3ed65f-20ee-4fb7-899f-7eae2dbf7c5a/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALDissertação - Wallisson Calixto Nogueira - 2021.pdfDissertação - Wallisson Calixto Nogueira - 2021.pdfapplication/pdf2628258http://repositorio.bc.ufg.br/tede/bitstreams/4395eecb-71a7-4240-b834-c26ff9330119/downloade41a46e931215cde03c87d09914b71d2MD53tede/118532023-02-09 12:24:46.62http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11853http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2023-02-09T15:24:46Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar |
dc.title.alternative.eng.fl_str_mv |
Optimal sizing and sitting of distributed generation using interval load flow |
title |
Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar |
spellingShingle |
Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar Nogueira, Wallisson Calixto Otimização Incertezas Fluxo de potência intervalar Optimization Uncertainty Interval load flow ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA |
title_short |
Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar |
title_full |
Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar |
title_fullStr |
Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar |
title_full_unstemmed |
Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar |
title_sort |
Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar |
author |
Nogueira, Wallisson Calixto |
author_facet |
Nogueira, Wallisson Calixto |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Garcés Negrete, Lina Paola |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3707701912481754 |
dc.contributor.referee1.fl_str_mv |
Garcés Negrete, Lina Paola |
dc.contributor.referee2.fl_str_mv |
Brigatto, Gelson Antônio Andrea |
dc.contributor.referee3.fl_str_mv |
Belati, Edmarcio Antonio |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5459071855563962 |
dc.contributor.author.fl_str_mv |
Nogueira, Wallisson Calixto |
contributor_str_mv |
Garcés Negrete, Lina Paola Garcés Negrete, Lina Paola Brigatto, Gelson Antônio Andrea Belati, Edmarcio Antonio |
dc.subject.por.fl_str_mv |
Otimização Incertezas Fluxo de potência intervalar |
topic |
Otimização Incertezas Fluxo de potência intervalar Optimization Uncertainty Interval load flow ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA |
dc.subject.eng.fl_str_mv |
Optimization Uncertainty Interval load flow |
dc.subject.cnpq.fl_str_mv |
ENGENHARIAS::ENGENHARIA ELETRICA::SISTEMAS ELETRICOS DE POTENCIA |
description |
Modern Power Systems must deal with high levels of uncertainty in their planning and operation, these uncertainties are mainly due to variations in loads and distributed generation introduced by new technologies. This scenario brings new challenges for system planners and operators who need new tools to carry out more assertive analysis of the state of the network. This work presents an optimization methodology capable of considering uncertainties in the problem of sizing and sitting distributed generation in the networks. The proposed methodology uses the interval power flow (ILF) in order to add uncertainties to the combinatorial optimization problem that is solved through the meta-heuristics Symbiotic Organism Search (SOS) and Particle Swarm Optimization (PSO) for performance comparison purposes. The addition of uncertainties by ILF is validated by the probabilistic power flow (PLF) solved by Monte Carlo Simulation (MCS). This methodology was implemented in Python®, and was applied in the IEEE 33-bus, IEEE 34-bus and IEEE 69-bus test networks where distributed generation sizing and sitting problems were solved in order to minimize technical losses and to improve the voltage levels of the network. For the addition of uncertainties, the results obtained from the proposed ILF in the tested networks are compatible with those obtained by the PLF, thus showing the robustness and applicability of the proposed method. For the solution of the optimization problem, the SOS meta-heuristic proved to be robust, since it was able to find the best solutions that present the lowest losses, keeping the voltage levels regulated to the predetermined levels. On the other hand, the PSO meta-heuristic presents less satisfactory results, because for all the systems tested, the solution has a lower quality than that found by SOS, thus showing that the PSO algorithm presents difficulties to escape the minimum locations found during the simulation. |
publishDate |
2021 |
dc.date.issued.fl_str_mv |
2021-11-30 |
dc.date.accessioned.fl_str_mv |
2022-01-19T12:38:33Z |
dc.date.available.fl_str_mv |
2022-01-19T12:38:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
NOGUEIRA, W. C. Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar. 2021. 118 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2021. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/11853 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000268m |
identifier_str_mv |
NOGUEIRA, W. C. Alocação e dimensionamento ótimo de geração distribuída utilizando o fluxo de potência intervalar. 2021. 118 f. Dissertação (Mestrado em Engenharia Elétrica e da Computação) - Universidade Federal de Goiás, Goiânia, 2021. ark:/38995/001300000268m |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/11853 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
49 |
dc.relation.confidence.fl_str_mv |
500 500 500 |
dc.relation.department.fl_str_mv |
4 |
dc.relation.cnpq.fl_str_mv |
439 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Engenharia Elétrica e da Computação (EMC) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola de Engenharia Elétrica, Mecânica e de Computação - EMC (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/125ea675-9bb0-4605-b420-82ef54105002/download http://repositorio.bc.ufg.br/tede/bitstreams/bb3ed65f-20ee-4fb7-899f-7eae2dbf7c5a/download http://repositorio.bc.ufg.br/tede/bitstreams/4395eecb-71a7-4240-b834-c26ff9330119/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 e41a46e931215cde03c87d09914b71d2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172531739426816 |