SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas

Detalhes bibliográficos
Autor(a) principal: Santos, Vinícius Araújo
Data de Publicação: 2018
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000009smn
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/9083
Resumo: Visual Odometry is an important process in image based navigation of robots. The standard methods of this field rely on the good feature matching between frames where feature detection on images stands as a well adressed problem within Computer Vision. Such techniques are subject to illumination problems, noise and poor feature localization accuracy. Thus, 3D information on a scene may mitigate the uncertainty of the features on images. Deep Learning techniques show great results when dealing with common difficulties of VO such as low illumination conditions and bad feature selection. While Visual Odometry and Deep Learning have been connected previously, no techniques applying Siamese Convolutional Networks on depth infomation given by disparity maps have been acknowledged as far as this work’s researches went. This work aims to fill this gap by applying Deep Learning to estimate egomotion through disparity maps on an Siamese architeture. The SiameseVO-Depth architeture is compared to state of the art techniques on OV by using the KITTI Vision Benchmark Suite. The results reveal that the chosen methodology succeeded on the estimation of Visual Odometry although it doesn’t outperform the state-of-the-art techniques. This work presents fewer steps in relation to standard VO techniques for it consists of an end-to-end solution and demonstrates a new approach of Deep Learning applied to Visual Odometry.
id UFG-2_3c40d112a5066df1563885a0b57efeb4
oai_identifier_str oai:repositorio.bc.ufg.br:tede/9083
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Laureano, Gustavo Teodorohttp://lattes.cnpq.br/4418446095942420Laureano, Gustavo TeodoroSoares, Anderson da SilvaCoelho, Clarimar Joséhttp://lattes.cnpq.br/8246451406819424Santos, Vinícius Araújo2018-11-21T11:06:26Z2018-10-11SANTOS, V. A. SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas. 2018. 73 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2018.http://repositorio.bc.ufg.br/tede/handle/tede/9083ark:/38995/0013000009smnVisual Odometry is an important process in image based navigation of robots. The standard methods of this field rely on the good feature matching between frames where feature detection on images stands as a well adressed problem within Computer Vision. Such techniques are subject to illumination problems, noise and poor feature localization accuracy. Thus, 3D information on a scene may mitigate the uncertainty of the features on images. Deep Learning techniques show great results when dealing with common difficulties of VO such as low illumination conditions and bad feature selection. While Visual Odometry and Deep Learning have been connected previously, no techniques applying Siamese Convolutional Networks on depth infomation given by disparity maps have been acknowledged as far as this work’s researches went. This work aims to fill this gap by applying Deep Learning to estimate egomotion through disparity maps on an Siamese architeture. The SiameseVO-Depth architeture is compared to state of the art techniques on OV by using the KITTI Vision Benchmark Suite. The results reveal that the chosen methodology succeeded on the estimation of Visual Odometry although it doesn’t outperform the state-of-the-art techniques. This work presents fewer steps in relation to standard VO techniques for it consists of an end-to-end solution and demonstrates a new approach of Deep Learning applied to Visual Odometry.Odometria Visual é um importante processo na navegação de robôs baseada em imagens. Os métodos clássicos deste tema dependem de boas correspondências de características feitas entre imagens sendo que a detecção de características em imagens é um tema amplamente discutido no campo de Visão Computacional. Estas técnicas estão sujeitas a problemas de iluminação, presença de ruído e baixa de acurácia de localização. Nesse contexto, a informação tridimensional de uma cena pode ser uma forma de mitigar as incertezas sobre as características em imagens. Técnicas de Deep Learning têm demonstrado bons resultados lidando com problemas comuns em técnicas de OV como insuficiente iluminação e erros na seleção de características. Ainda que já existam trabalhos que relacionam Odometria Visual e Deep Learning, não foram encontradas técnicas que utilizem Redes Convolucionais Siamesas com sucesso utilizando informações de profundidade de mapas de disparidade durante esta pesquisa. Este trabalho visa preencher esta lacuna aplicando Deep Learning na estimativa do movimento por de mapas de disparidade em uma arquitetura Siamesa. A arquitetura SiameseVO-Depth proposta neste trabalho é comparada à técnicas do estado da arte em OV utilizando a base de dados KITTI Vision Benchmark Suite. Os resultados demonstram que através da metodologia proposta é possível a estimativa dos valores de uma Odometria Visual ainda que o desempenho não supere técnicas consideradas estado da arte. O trabalho proposto possui menos etapas em comparação com técnicas clássicas de OV por apresentar-se como uma solução fim-a-fim e apresenta nova abordagem no campo de Deep Learning aplicado à Odometria Visual.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-21T11:05:44Z No. of bitstreams: 2 Dissertação - Vinícius Araújo Santos - 2018.pdf: 14601054 bytes, checksum: e02a8bcd3cdc93bf2bf202c3933b3f27 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-11-21T11:06:26Z (GMT) No. of bitstreams: 2 Dissertação - Vinícius Araújo Santos - 2018.pdf: 14601054 bytes, checksum: e02a8bcd3cdc93bf2bf202c3933b3f27 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-11-21T11:06:26Z (GMT). No. of bitstreams: 2 Dissertação - Vinícius Araújo Santos - 2018.pdf: 14601054 bytes, checksum: e02a8bcd3cdc93bf2bf202c3933b3f27 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-10-11Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessOdometria visualVisão computacionalDeep learningRedes convolucionais siamesasVisual odometryComputer visionDeep learningSiamese convolutional neural networkCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOSiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesasSiameseVO-Depth: visual odometry through siamese neural networksinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-771226673463364476836717112058112045092075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/c49b5530-fa27-4a05-b87a-aeb524eff759/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/d3191f48-bc00-4201-b6d0-222c3eaeca05/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/c213856a-c911-41e7-996b-ea91d6f8f483/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/a0a1e0a6-f124-49dc-a9c3-eb198acf2b86/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Vinícius Araújo Santos - 2018.pdfDissertação - Vinícius Araújo Santos - 2018.pdfapplication/pdf14601054http://repositorio.bc.ufg.br/tede/bitstreams/3c7270f8-e41b-4118-908e-b134cbe1f4a4/downloade02a8bcd3cdc93bf2bf202c3933b3f27MD55tede/90832018-11-21 09:06:26.912http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9083http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2018-11-21T11:06:26Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas
dc.title.alternative.eng.fl_str_mv SiameseVO-Depth: visual odometry through siamese neural networks
title SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas
spellingShingle SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas
Santos, Vinícius Araújo
Odometria visual
Visão computacional
Deep learning
Redes convolucionais siamesas
Visual odometry
Computer vision
Deep learning
Siamese convolutional neural network
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas
title_full SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas
title_fullStr SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas
title_full_unstemmed SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas
title_sort SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas
author Santos, Vinícius Araújo
author_facet Santos, Vinícius Araújo
author_role author
dc.contributor.advisor1.fl_str_mv Laureano, Gustavo Teodoro
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4418446095942420
dc.contributor.referee1.fl_str_mv Laureano, Gustavo Teodoro
dc.contributor.referee2.fl_str_mv Soares, Anderson da Silva
dc.contributor.referee3.fl_str_mv Coelho, Clarimar José
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8246451406819424
dc.contributor.author.fl_str_mv Santos, Vinícius Araújo
contributor_str_mv Laureano, Gustavo Teodoro
Laureano, Gustavo Teodoro
Soares, Anderson da Silva
Coelho, Clarimar José
dc.subject.por.fl_str_mv Odometria visual
Visão computacional
Deep learning
Redes convolucionais siamesas
topic Odometria visual
Visão computacional
Deep learning
Redes convolucionais siamesas
Visual odometry
Computer vision
Deep learning
Siamese convolutional neural network
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Visual odometry
Computer vision
Deep learning
Siamese convolutional neural network
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Visual Odometry is an important process in image based navigation of robots. The standard methods of this field rely on the good feature matching between frames where feature detection on images stands as a well adressed problem within Computer Vision. Such techniques are subject to illumination problems, noise and poor feature localization accuracy. Thus, 3D information on a scene may mitigate the uncertainty of the features on images. Deep Learning techniques show great results when dealing with common difficulties of VO such as low illumination conditions and bad feature selection. While Visual Odometry and Deep Learning have been connected previously, no techniques applying Siamese Convolutional Networks on depth infomation given by disparity maps have been acknowledged as far as this work’s researches went. This work aims to fill this gap by applying Deep Learning to estimate egomotion through disparity maps on an Siamese architeture. The SiameseVO-Depth architeture is compared to state of the art techniques on OV by using the KITTI Vision Benchmark Suite. The results reveal that the chosen methodology succeeded on the estimation of Visual Odometry although it doesn’t outperform the state-of-the-art techniques. This work presents fewer steps in relation to standard VO techniques for it consists of an end-to-end solution and demonstrates a new approach of Deep Learning applied to Visual Odometry.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-11-21T11:06:26Z
dc.date.issued.fl_str_mv 2018-10-11
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SANTOS, V. A. SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas. 2018. 73 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2018.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/9083
dc.identifier.dark.fl_str_mv ark:/38995/0013000009smn
identifier_str_mv SANTOS, V. A. SiameseVO-Depth: odometria visual através de redes neurais convolucionais siamesas. 2018. 73 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2018.
ark:/38995/0013000009smn
url http://repositorio.bc.ufg.br/tede/handle/tede/9083
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3303550325223384799
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/c49b5530-fa27-4a05-b87a-aeb524eff759/download
http://repositorio.bc.ufg.br/tede/bitstreams/d3191f48-bc00-4201-b6d0-222c3eaeca05/download
http://repositorio.bc.ufg.br/tede/bitstreams/c213856a-c911-41e7-996b-ea91d6f8f483/download
http://repositorio.bc.ufg.br/tede/bitstreams/a0a1e0a6-f124-49dc-a9c3-eb198acf2b86/download
http://repositorio.bc.ufg.br/tede/bitstreams/3c7270f8-e41b-4118-908e-b134cbe1f4a4/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
e02a8bcd3cdc93bf2bf202c3933b3f27
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172614733168640