Algoritmo evolutivo com representação inteira para seleção de características
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/00130000082hx |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/7395 |
Resumo: | Machine learning problems usually involve a large number of features or variables. In this context, feature selection algorithms have the challenge of determining a reduced subset from the original set. The main difficulty in this task is the high number of solutions available in the search space. In this context, genetic algorithm is one of the most used techniques in this type of problem due to its implicit parallelism in the exploration of the search space of the problem considered. However, a binary type representation is usually used to encode the solutions. This work proposes an implementation solution that makes use of integer representation called intEA-MLR instead of binary. The integer representation optimizes the understanding of the data, as the features to be selected are represented by integer values, reducing the size of the chromosome used in the search process. The intEA-MLR in this context is presented as an alternative way of solving high dimensional problems in regression problems. As a case study, three different sets of data are used concerning problems involving determination of properties of interest in samples of 1) Grain Wheat, 2) Medicine tablets and 3) petroleum. Such sets were used in competitions held at the International Diffuse Reflectance Conference (IDRC) (http://cnirs.clubexpress.com/content.aspx?page_id=22&club_ id=409746&module_id=190211), in the years 2008, 2012 and 2014, respectively. The results showed that the proposed solution was able to improve the obtained solutions when compared to the classical implementation that makes use of binary coding, with both more accurate prediction models and with reduced number of features. IntEA-MLR also outperformed the competition winners, reaching 91.17% better than the competition winner for the petroleum data set. In addition, the results also indicated that the computation time required by the intEA-MLR is relatively smaller as more features are available. |
id |
UFG-2_46355f221045187d87547ee2d0a512bb |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/7395 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Soares, Telma Woerle de Limahttp://lattes.cnpq.br/6296363436468330Soares, Anderson da Silvahttp://lattes.cnpq.br/1096941114079527Soares, Telma Woerle de Limahttp://lattes.cnpq.br/6296363436468330Soares, Anderson da Silvahttp://lattes.cnpq.br/1096941114079527Camilo Junior , Celso GonçalvesDias , Jailson Cardosohttp://lattes.cnpq.br/4001011015559091Sousa, Rhelcris Salvino de2017-06-01T11:00:44Z2017-04-20SOUSA, R. S. Algoritmo evolutivo com representação inteira para seleção de características. 2017. 64 f. Dissertação (Mestrado Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/7395ark:/38995/00130000082hxMachine learning problems usually involve a large number of features or variables. In this context, feature selection algorithms have the challenge of determining a reduced subset from the original set. The main difficulty in this task is the high number of solutions available in the search space. In this context, genetic algorithm is one of the most used techniques in this type of problem due to its implicit parallelism in the exploration of the search space of the problem considered. However, a binary type representation is usually used to encode the solutions. This work proposes an implementation solution that makes use of integer representation called intEA-MLR instead of binary. The integer representation optimizes the understanding of the data, as the features to be selected are represented by integer values, reducing the size of the chromosome used in the search process. The intEA-MLR in this context is presented as an alternative way of solving high dimensional problems in regression problems. As a case study, three different sets of data are used concerning problems involving determination of properties of interest in samples of 1) Grain Wheat, 2) Medicine tablets and 3) petroleum. Such sets were used in competitions held at the International Diffuse Reflectance Conference (IDRC) (http://cnirs.clubexpress.com/content.aspx?page_id=22&club_ id=409746&module_id=190211), in the years 2008, 2012 and 2014, respectively. The results showed that the proposed solution was able to improve the obtained solutions when compared to the classical implementation that makes use of binary coding, with both more accurate prediction models and with reduced number of features. IntEA-MLR also outperformed the competition winners, reaching 91.17% better than the competition winner for the petroleum data set. In addition, the results also indicated that the computation time required by the intEA-MLR is relatively smaller as more features are available.Problemas de aprendizado de máquina geralmente envolvem um grande número de características ou variáveis. Nesse contexto, algoritmos de seleção de características tem como desafio determinar um subconjunto reduzido a partir do conjunto original. A principal dificuldade nesta tarefa é o elevado número de soluções disponíveis no espaço de busca. Nesse contexto, algoritmo genético é uma das técnicas mais utilizadas nesse tipo de problema em razão de seu paralelismo implícito na exploração do espaço de busca do problema considerado. Entretanto, geralmente utiliza-se uma representação do tipo biná- ria para codificar as soluções. Neste trabalho é proposto uma solução de implementação que faz uso de representação inteira denominada intEA-MLR em detrimento da binária. A representação inteira otimiza o entendimento dos dados, na medida em que as características a serem selecionadas são determinadas por valores inteiros reduzindo o tamanho do cromossomo utilizado no processo de busca. O intEA-MLR nesse contexto, se apresenta como uma forma alternativa de resolução de problemas de alta dimensionalidade em problemas de regressão. Como estudo de caso, utiliza-se três diferentes conjuntos de dados referente a problemas envolvendo determinação de propriedades de interesse em amostra de 1) Grãos de Trigo, 2) Comprimidos de remédio e 3) Petróleo. Tais conjuntos foram utilizados nas competições realizadas no International Diffuse Reflectance Conference (IDRC) (http://cnirs.clubexpress.com/content.aspx?page_id=22&club_ id=409746&module_id=190211), nos anos de 2008, 2012 e 2014, respectivamente. Os resultados mostraram que a solução proposta foi capaz de aprimorar as soluções obtidas quando comparadas com a implementação clássica que faz uso da codificação binária, tanto com modelos de predição mais acurados quanto com número reduzido de características. intEA-MLR também obteve resultados superiores aos dos vencedores das competições, chegando a obter soluções 91,17% melhores do que o vencedor da competição para o conjunto de dados de petróleo. Adicionalmente, os resultados também indicaram que o tempo de computação requerido pelo intEA-MLR é relativamente menor a medida em que um número maior de características estão disponíveis.Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-05-31T17:56:45Z No. of bitstreams: 2 Dissertação - Rhelcris Salvino de Sousa -2017.pdf: 12280322 bytes, checksum: 2985f69ec9d4b79ed4266baba761bd15 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-06-01T11:00:44Z (GMT) No. of bitstreams: 2 Dissertação - Rhelcris Salvino de Sousa -2017.pdf: 12280322 bytes, checksum: 2985f69ec9d4b79ed4266baba761bd15 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-06-01T11:00:44Z (GMT). No. of bitstreams: 2 Dissertação - Rhelcris Salvino de Sousa -2017.pdf: 12280322 bytes, checksum: 2985f69ec9d4b79ed4266baba761bd15 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-04-20Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSeleção de característicasComputação evolutivaCalibração multivariadaRegressão linear múltiplaFeatures selectionEvolutionary computationMultivariate calibrationMultiple linear regressionCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOAlgoritmo evolutivo com representação inteira para seleção de característicasEvolutionary algorithm using integer representation for feature selectioninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-771226673463364476836717112058112045092075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/0a786493-9d4c-41ac-81ec-cc382f27e800/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/1cb70ece-31e7-42a9-9b65-18ae2cb1004b/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/1be3b21a-47ac-4117-ba10-2d5dd0ad0f31/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/ecb9dc8a-ccee-4fb3-b705-48ce2e8ab5c7/downloadbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALDissertação - Rhelcris Salvino de Sousa -2017.pdfDissertação - Rhelcris Salvino de Sousa -2017.pdfapplication/pdf12280322http://repositorio.bc.ufg.br/tede/bitstreams/3238a409-bf9e-4e09-978c-aeeb032c5ba0/download2985f69ec9d4b79ed4266baba761bd15MD55tede/73952017-06-01 08:00:44.825http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/7395http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-06-01T11:00:44Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Algoritmo evolutivo com representação inteira para seleção de características |
dc.title.alternative.eng.fl_str_mv |
Evolutionary algorithm using integer representation for feature selection |
title |
Algoritmo evolutivo com representação inteira para seleção de características |
spellingShingle |
Algoritmo evolutivo com representação inteira para seleção de características Sousa, Rhelcris Salvino de Seleção de características Computação evolutiva Calibração multivariada Regressão linear múltipla Features selection Evolutionary computation Multivariate calibration Multiple linear regression CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Algoritmo evolutivo com representação inteira para seleção de características |
title_full |
Algoritmo evolutivo com representação inteira para seleção de características |
title_fullStr |
Algoritmo evolutivo com representação inteira para seleção de características |
title_full_unstemmed |
Algoritmo evolutivo com representação inteira para seleção de características |
title_sort |
Algoritmo evolutivo com representação inteira para seleção de características |
author |
Sousa, Rhelcris Salvino de |
author_facet |
Sousa, Rhelcris Salvino de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Soares, Telma Woerle de Lima |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6296363436468330 |
dc.contributor.advisor-co1.fl_str_mv |
Soares, Anderson da Silva |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/1096941114079527 |
dc.contributor.referee1.fl_str_mv |
Soares, Telma Woerle de Lima |
dc.contributor.referee1Lattes.fl_str_mv |
http://lattes.cnpq.br/6296363436468330 |
dc.contributor.referee2.fl_str_mv |
Soares, Anderson da Silva |
dc.contributor.referee2Lattes.fl_str_mv |
http://lattes.cnpq.br/1096941114079527 |
dc.contributor.referee3.fl_str_mv |
Camilo Junior , Celso Gonçalves |
dc.contributor.referee4.fl_str_mv |
Dias , Jailson Cardoso |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4001011015559091 |
dc.contributor.author.fl_str_mv |
Sousa, Rhelcris Salvino de |
contributor_str_mv |
Soares, Telma Woerle de Lima Soares, Anderson da Silva Soares, Telma Woerle de Lima Soares, Anderson da Silva Camilo Junior , Celso Gonçalves Dias , Jailson Cardoso |
dc.subject.por.fl_str_mv |
Seleção de características Computação evolutiva Calibração multivariada Regressão linear múltipla |
topic |
Seleção de características Computação evolutiva Calibração multivariada Regressão linear múltipla Features selection Evolutionary computation Multivariate calibration Multiple linear regression CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Features selection Evolutionary computation Multivariate calibration Multiple linear regression |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Machine learning problems usually involve a large number of features or variables. In this context, feature selection algorithms have the challenge of determining a reduced subset from the original set. The main difficulty in this task is the high number of solutions available in the search space. In this context, genetic algorithm is one of the most used techniques in this type of problem due to its implicit parallelism in the exploration of the search space of the problem considered. However, a binary type representation is usually used to encode the solutions. This work proposes an implementation solution that makes use of integer representation called intEA-MLR instead of binary. The integer representation optimizes the understanding of the data, as the features to be selected are represented by integer values, reducing the size of the chromosome used in the search process. The intEA-MLR in this context is presented as an alternative way of solving high dimensional problems in regression problems. As a case study, three different sets of data are used concerning problems involving determination of properties of interest in samples of 1) Grain Wheat, 2) Medicine tablets and 3) petroleum. Such sets were used in competitions held at the International Diffuse Reflectance Conference (IDRC) (http://cnirs.clubexpress.com/content.aspx?page_id=22&club_ id=409746&module_id=190211), in the years 2008, 2012 and 2014, respectively. The results showed that the proposed solution was able to improve the obtained solutions when compared to the classical implementation that makes use of binary coding, with both more accurate prediction models and with reduced number of features. IntEA-MLR also outperformed the competition winners, reaching 91.17% better than the competition winner for the petroleum data set. In addition, the results also indicated that the computation time required by the intEA-MLR is relatively smaller as more features are available. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-06-01T11:00:44Z |
dc.date.issued.fl_str_mv |
2017-04-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SOUSA, R. S. Algoritmo evolutivo com representação inteira para seleção de características. 2017. 64 f. Dissertação (Mestrado Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2017. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/7395 |
dc.identifier.dark.fl_str_mv |
ark:/38995/00130000082hx |
identifier_str_mv |
SOUSA, R. S. Algoritmo evolutivo com representação inteira para seleção de características. 2017. 64 f. Dissertação (Mestrado Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2017. ark:/38995/00130000082hx |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/7395 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-3303550325223384799 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-7712266734633644768 |
dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/0a786493-9d4c-41ac-81ec-cc382f27e800/download http://repositorio.bc.ufg.br/tede/bitstreams/1cb70ece-31e7-42a9-9b65-18ae2cb1004b/download http://repositorio.bc.ufg.br/tede/bitstreams/1be3b21a-47ac-4117-ba10-2d5dd0ad0f31/download http://repositorio.bc.ufg.br/tede/bitstreams/ecb9dc8a-ccee-4fb3-b705-48ce2e8ab5c7/download http://repositorio.bc.ufg.br/tede/bitstreams/3238a409-bf9e-4e09-978c-aeeb032c5ba0/download |
bitstream.checksum.fl_str_mv |
4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 2985f69ec9d4b79ed4266baba761bd15 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172596040204288 |