Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental

Detalhes bibliográficos
Autor(a) principal: Andrade, Rodrigo Rocha
Data de Publicação: 2015
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/6733
Resumo: Previous studies show that there is effective interaction between silanized glass fiber and resin matrix formed by methacrylates; However, there is no information on the use of milled glass fiber and the resin incorporated as a filler particle in order to obtain better mechanical properties in composites for the manufacture of intraradiculares pins. The objectives of this study were to evaluate the influence of different types (barium silicate and / or glass fiber powder) and charged particle concentrations in flexural strength, resistance to diametrical and Knoop microhardness traction, an experimental composite composed of 47.5% loading of particles, 30 % glass fiber and resin matrix of 22.5% (BISGMA and TEGDMA (1: 1)); evaluate the morphology of the filler particles and their interaction with the experimental composite in scanning electron microscopy. For producing glass fiber powder, fibers were milled in a mortar grinder / pestle, and then six experimental groups (N = 10) were prepared, varying the ratio of the kind of charged particle: CONTROL - 47.5% barium silicate and 0.0% glass fiber powder; G7.5 - 40.0% barium silicate and 7.5% glass fiber powder; G17.5 - barium silicate 30.0% and 17.5% glass fiber powder; G27.5 - barium silicate 20.0% and 27.5% glass fiber powder; G37.5% - 10.0% barium silicate and 37.5% glass powder vibrates; G47.5% - 0.0% barium silicate and 47.5% glass fiber powder. Cylindrical samples (3 mm x 6 mm) were produced for the diametral tensile strength test, and samples in bar format (25 mm x 2 mm x 2 mm) for flexural and microhardness knoop throws. Resistance tests were performed at 0.5 mm / min on a universal testing machine (Instron 5965). The Knoop microhardness test was made 0.2 KHN (200 g) for 40 seconds at a hardness tester (Shimadzu HMV2). After verification of normality and homogeneity of data distribution with the Kolmogorov-Smirnov test, the data were submitted to ANOVA and Tukey tests (α = 0.05). Statistical analysis demonstrated (p = 0.001): flexural strength: CONTROL - 259.91 ± 26.01a; G7.5 - 212.48 ± 35.91b; G17.5 - 177.63 ± 24.88bc; G27.5 - 166.58 ± 30.84c; G37.5 - 92.08 ± 6.46d; G47.5 - 80.60 ± 17.89d; Diametral tensile strength: CONTROL - 31.05 ± 2.98a; G7.5 - 14.55 ± 3.70b; G27.5 - 12.65 ± 3.34bc; G17.5 - 8.62 ± 3.51cd; G47.5 - 8.04 ± 1.63d; G37.5 - 6.63 ± 2.85d; Knoop microhardness: CONTROL - 75.69 ± 12.19a; G37.5 - 67.62 ± 1.79ab; G27.5 - 65.72 ± 2.01b; G47.5 - 64.06 ± 1.61b; G7.5 - 62.79 ± 2.79b; G17.5 - 59.87 ± 2.33b. The gradual substitution a percentage of the barium silicate glass fiber powder in a glass fiber reinforced composite trial resulted in a decrease in the results of flexural strength, diametral tensile strength and Knoop hardness. Morphologically, glass fiber powder made up of particles with heterogeneous and larger than the particle of barium silicate. The interaction of the glass fiber powder to the resin matrix and fiber reinforcement have not proved effective.
id UFG-2_465f07fe6c4f787f51fdb9a7bd1f6f70
oai_identifier_str oai:repositorio.bc.ufg.br:tede/6733
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Fonseca, Rodrigo Borgeshttp://lattes.cnpq.br/8629552867290605Fonseca, Rodrigo Borgeshttp://lattes.cnpq.br/8629552867290605Gonçalves, Alberto MagnoReges, Rogério Vieirahttp://lattes.cnpq.br/0802381314454056Andrade, Rodrigo Rocha2017-01-16T10:51:51Z2015-03-24ANDRADE, R. R. Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental. 2015. 56 f. Dissertação (Mestrado em Odontologia) - Universidade Federal de Goiás, Goiânia, 2015.http://repositorio.bc.ufg.br/tede/handle/tede/6733Previous studies show that there is effective interaction between silanized glass fiber and resin matrix formed by methacrylates; However, there is no information on the use of milled glass fiber and the resin incorporated as a filler particle in order to obtain better mechanical properties in composites for the manufacture of intraradiculares pins. The objectives of this study were to evaluate the influence of different types (barium silicate and / or glass fiber powder) and charged particle concentrations in flexural strength, resistance to diametrical and Knoop microhardness traction, an experimental composite composed of 47.5% loading of particles, 30 % glass fiber and resin matrix of 22.5% (BISGMA and TEGDMA (1: 1)); evaluate the morphology of the filler particles and their interaction with the experimental composite in scanning electron microscopy. For producing glass fiber powder, fibers were milled in a mortar grinder / pestle, and then six experimental groups (N = 10) were prepared, varying the ratio of the kind of charged particle: CONTROL - 47.5% barium silicate and 0.0% glass fiber powder; G7.5 - 40.0% barium silicate and 7.5% glass fiber powder; G17.5 - barium silicate 30.0% and 17.5% glass fiber powder; G27.5 - barium silicate 20.0% and 27.5% glass fiber powder; G37.5% - 10.0% barium silicate and 37.5% glass powder vibrates; G47.5% - 0.0% barium silicate and 47.5% glass fiber powder. Cylindrical samples (3 mm x 6 mm) were produced for the diametral tensile strength test, and samples in bar format (25 mm x 2 mm x 2 mm) for flexural and microhardness knoop throws. Resistance tests were performed at 0.5 mm / min on a universal testing machine (Instron 5965). The Knoop microhardness test was made 0.2 KHN (200 g) for 40 seconds at a hardness tester (Shimadzu HMV2). After verification of normality and homogeneity of data distribution with the Kolmogorov-Smirnov test, the data were submitted to ANOVA and Tukey tests (α = 0.05). Statistical analysis demonstrated (p = 0.001): flexural strength: CONTROL - 259.91 ± 26.01a; G7.5 - 212.48 ± 35.91b; G17.5 - 177.63 ± 24.88bc; G27.5 - 166.58 ± 30.84c; G37.5 - 92.08 ± 6.46d; G47.5 - 80.60 ± 17.89d; Diametral tensile strength: CONTROL - 31.05 ± 2.98a; G7.5 - 14.55 ± 3.70b; G27.5 - 12.65 ± 3.34bc; G17.5 - 8.62 ± 3.51cd; G47.5 - 8.04 ± 1.63d; G37.5 - 6.63 ± 2.85d; Knoop microhardness: CONTROL - 75.69 ± 12.19a; G37.5 - 67.62 ± 1.79ab; G27.5 - 65.72 ± 2.01b; G47.5 - 64.06 ± 1.61b; G7.5 - 62.79 ± 2.79b; G17.5 - 59.87 ± 2.33b. The gradual substitution a percentage of the barium silicate glass fiber powder in a glass fiber reinforced composite trial resulted in a decrease in the results of flexural strength, diametral tensile strength and Knoop hardness. Morphologically, glass fiber powder made up of particles with heterogeneous and larger than the particle of barium silicate. The interaction of the glass fiber powder to the resin matrix and fiber reinforcement have not proved effective.Estudos prévios demonstram haver efetiva interação entre fibra de vidro silanizada e matriz resinosa formada por metacrilatos; porém, inexiste informação sobre a utilização da fibra de vidro moída e incorporada à resina como partícula de carga, com a finalidade de obter melhores propriedades mecânicas em compósitos destinados à fabricação de pinos intraradiculares. Os objetivos deste trabalho foram: avaliar a influência de diferentes tipos (silicato de bário e/ou pó de fibra de vidro) e concentrações de partícula de carga na resistência flexural, resistência à tração diametral e microdureza Knoop, de um compósito experimental composto por 47,5 % de partículas de carga, 30 % de fibra de vidro e 22,5 % de matriz resinosa (BISGMA e TEGDMA (1:1)); avaliar a morfologia das partículas de carga e sua interação com o compósito experimental em microscopia eletrônica de varredura. Para produção do pó de fibra de vidro, fibras foram moídas em um moinho almofariz/pistilo e então seis grupos experimentais (N = 10) foram confeccionados, variando a proporção do tipo de partícula de carga: CONTROLE – 47,5 % silicato de bário e 0,0 % pó de fibra de vidro; G7,5 – 40,0 % silicato de bário e 7,5 % pó de fibra de vidro; G17,5 – 30,0 % silicato de bário e 17,5 % pó de fibra de vidro; G27,5 – 20,0 % silicato de bário e 27,5 % pó de fibra de vidro; G37,5 % - 10,0 % silicato de bário e 37,5 % pó de vibra de vidro; G47,5 % - 0,0 % silicato de bário e 47,5 % pó de fibra de vidro. Amostras cilíndricas (3 mm x 6 mm) foram produzidas para o teste de resistência à tração diametral, e amostras em formato de barra (25 mm x 2 mm x 2 mm) para os testes de resistência flexural e microdureza knoop. Os testes de resistência foram executados a 0,5 mm/min em máquina de ensaios universais (Instron 5965). O teste de microdureza knoop foi feito a 0,2 KHN (200 g) por 40 segundos em um durômetro (HMV2 Shimadzu). Após verificação de normalidade e homogeneidade de distribuição dos dados com o teste Kolmogorov-Smirnov, os dados foram submetidos aos testes ANOVA e Tukey (α=0,05). Análises estatísticas demonstraram (p=0,001): resistência flexural: CONTROLE - 259,91±26,01a; G7,5 - 212,48±35,91b; G17,5 - 177,63±24,88bc; G27,5 - 166,58±30,84c; G37,5 – 92,08±6,46d ; G47,5 – 80,60±17,89d; Resistência à tração diametral: CONTROLE – 31,05±2,98a; G7,5 – 14,55±3,70b; G27,5 – 12,65±3,34bc; G17,5 – 8,62±3,51cd; G47,5 – 8,04±1,63d ; G37,5 – 6,63±2,85d; Microdureza Knoop: CONTROLE – 75,69±12,19a; G37,5 – 67,62±1,79ab; G27,5 – 65,72±2,01b; G47,5 – 64,06±1,61b; G7,5 – 62,79±2,79b; G17,5 – 59,87±2,33b. A substituição gradativa em percentual do silicato de bário pelo pó de fibra de vidro em um compósito experimental reforçado com fibra de vidro resultou em queda nos resultados de resistência flexural, tração diametral e microdureza knoop. Morfologicamente, a partícula de pó de fibra de vidro apresentou-se heterogênea e com tamanho maior que a partícula do silicato de bário. A interação do pó de fibra de vidro com a matriz resinosa e o reforço de fibra não se mostraram efetivos.Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-01-12T18:01:08Z No. of bitstreams: 2 Dissertação - Rodrigo Rocha Andrade - 2015.pdf: 2602785 bytes, checksum: 247e93d65c955ab4bec180868a79f2e7 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-01-16T10:51:51Z (GMT) No. of bitstreams: 2 Dissertação - Rodrigo Rocha Andrade - 2015.pdf: 2602785 bytes, checksum: 247e93d65c955ab4bec180868a79f2e7 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-01-16T10:51:51Z (GMT). No. of bitstreams: 2 Dissertação - Rodrigo Rocha Andrade - 2015.pdf: 2602785 bytes, checksum: 247e93d65c955ab4bec180868a79f2e7 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2015-03-24application/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Odontologia (FO)UFGBrasilFaculdade de Odontologia - FO (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessCompósito reforçado com fibraPartícula de cargaMatriz resinosaFiber reinforced compositeParticle loadingResin matrixODONTOLOGIA::CLINICA ODONTOLOGICAInfluência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimentalInfluence of the ratio of reinforcement particles on the mechanical properties of a experimental compositeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-2325576619034292269600600600-5569154581575113691-1816740449898491657reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/f06c5efd-1257-48dc-a009-9fe7c93c00ec/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/5d2e39b7-2102-48a9-ab2b-0e1e23d9ec78/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/541a0ff4-fbfa-473d-81ea-b08a98843638/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/eb800bea-6b00-4565-816b-bde1df46af87/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Rodrigo Rocha Andrade - 2015.pdfDissertação - Rodrigo Rocha Andrade - 2015.pdfapplication/pdf2602785http://repositorio.bc.ufg.br/tede/bitstreams/61868a60-d242-4a0f-ae4e-6e9d59ad23da/download247e93d65c955ab4bec180868a79f2e7MD55tede/67332017-01-16 08:51:51.375http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/6733http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-01-16T10:51:51Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental
dc.title.alternative.eng.fl_str_mv Influence of the ratio of reinforcement particles on the mechanical properties of a experimental composite
title Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental
spellingShingle Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental
Andrade, Rodrigo Rocha
Compósito reforçado com fibra
Partícula de carga
Matriz resinosa
Fiber reinforced composite
Particle loading
Resin matrix
ODONTOLOGIA::CLINICA ODONTOLOGICA
title_short Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental
title_full Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental
title_fullStr Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental
title_full_unstemmed Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental
title_sort Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental
author Andrade, Rodrigo Rocha
author_facet Andrade, Rodrigo Rocha
author_role author
dc.contributor.advisor1.fl_str_mv Fonseca, Rodrigo Borges
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8629552867290605
dc.contributor.referee1.fl_str_mv Fonseca, Rodrigo Borges
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/8629552867290605
dc.contributor.referee2.fl_str_mv Gonçalves, Alberto Magno
dc.contributor.referee3.fl_str_mv Reges, Rogério Vieira
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0802381314454056
dc.contributor.author.fl_str_mv Andrade, Rodrigo Rocha
contributor_str_mv Fonseca, Rodrigo Borges
Fonseca, Rodrigo Borges
Gonçalves, Alberto Magno
Reges, Rogério Vieira
dc.subject.por.fl_str_mv Compósito reforçado com fibra
Partícula de carga
Matriz resinosa
topic Compósito reforçado com fibra
Partícula de carga
Matriz resinosa
Fiber reinforced composite
Particle loading
Resin matrix
ODONTOLOGIA::CLINICA ODONTOLOGICA
dc.subject.eng.fl_str_mv Fiber reinforced composite
Particle loading
Resin matrix
dc.subject.cnpq.fl_str_mv ODONTOLOGIA::CLINICA ODONTOLOGICA
description Previous studies show that there is effective interaction between silanized glass fiber and resin matrix formed by methacrylates; However, there is no information on the use of milled glass fiber and the resin incorporated as a filler particle in order to obtain better mechanical properties in composites for the manufacture of intraradiculares pins. The objectives of this study were to evaluate the influence of different types (barium silicate and / or glass fiber powder) and charged particle concentrations in flexural strength, resistance to diametrical and Knoop microhardness traction, an experimental composite composed of 47.5% loading of particles, 30 % glass fiber and resin matrix of 22.5% (BISGMA and TEGDMA (1: 1)); evaluate the morphology of the filler particles and their interaction with the experimental composite in scanning electron microscopy. For producing glass fiber powder, fibers were milled in a mortar grinder / pestle, and then six experimental groups (N = 10) were prepared, varying the ratio of the kind of charged particle: CONTROL - 47.5% barium silicate and 0.0% glass fiber powder; G7.5 - 40.0% barium silicate and 7.5% glass fiber powder; G17.5 - barium silicate 30.0% and 17.5% glass fiber powder; G27.5 - barium silicate 20.0% and 27.5% glass fiber powder; G37.5% - 10.0% barium silicate and 37.5% glass powder vibrates; G47.5% - 0.0% barium silicate and 47.5% glass fiber powder. Cylindrical samples (3 mm x 6 mm) were produced for the diametral tensile strength test, and samples in bar format (25 mm x 2 mm x 2 mm) for flexural and microhardness knoop throws. Resistance tests were performed at 0.5 mm / min on a universal testing machine (Instron 5965). The Knoop microhardness test was made 0.2 KHN (200 g) for 40 seconds at a hardness tester (Shimadzu HMV2). After verification of normality and homogeneity of data distribution with the Kolmogorov-Smirnov test, the data were submitted to ANOVA and Tukey tests (α = 0.05). Statistical analysis demonstrated (p = 0.001): flexural strength: CONTROL - 259.91 ± 26.01a; G7.5 - 212.48 ± 35.91b; G17.5 - 177.63 ± 24.88bc; G27.5 - 166.58 ± 30.84c; G37.5 - 92.08 ± 6.46d; G47.5 - 80.60 ± 17.89d; Diametral tensile strength: CONTROL - 31.05 ± 2.98a; G7.5 - 14.55 ± 3.70b; G27.5 - 12.65 ± 3.34bc; G17.5 - 8.62 ± 3.51cd; G47.5 - 8.04 ± 1.63d; G37.5 - 6.63 ± 2.85d; Knoop microhardness: CONTROL - 75.69 ± 12.19a; G37.5 - 67.62 ± 1.79ab; G27.5 - 65.72 ± 2.01b; G47.5 - 64.06 ± 1.61b; G7.5 - 62.79 ± 2.79b; G17.5 - 59.87 ± 2.33b. The gradual substitution a percentage of the barium silicate glass fiber powder in a glass fiber reinforced composite trial resulted in a decrease in the results of flexural strength, diametral tensile strength and Knoop hardness. Morphologically, glass fiber powder made up of particles with heterogeneous and larger than the particle of barium silicate. The interaction of the glass fiber powder to the resin matrix and fiber reinforcement have not proved effective.
publishDate 2015
dc.date.issued.fl_str_mv 2015-03-24
dc.date.accessioned.fl_str_mv 2017-01-16T10:51:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ANDRADE, R. R. Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental. 2015. 56 f. Dissertação (Mestrado em Odontologia) - Universidade Federal de Goiás, Goiânia, 2015.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/6733
identifier_str_mv ANDRADE, R. R. Influência da proporção de partículas de reforço nas propriedades mecânicas de um compósito experimental. 2015. 56 f. Dissertação (Mestrado em Odontologia) - Universidade Federal de Goiás, Goiânia, 2015.
url http://repositorio.bc.ufg.br/tede/handle/tede/6733
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -2325576619034292269
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv -5569154581575113691
dc.relation.cnpq.fl_str_mv -1816740449898491657
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Odontologia (FO)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Faculdade de Odontologia - FO (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/f06c5efd-1257-48dc-a009-9fe7c93c00ec/download
http://repositorio.bc.ufg.br/tede/bitstreams/5d2e39b7-2102-48a9-ab2b-0e1e23d9ec78/download
http://repositorio.bc.ufg.br/tede/bitstreams/541a0ff4-fbfa-473d-81ea-b08a98843638/download
http://repositorio.bc.ufg.br/tede/bitstreams/eb800bea-6b00-4565-816b-bde1df46af87/download
http://repositorio.bc.ufg.br/tede/bitstreams/61868a60-d242-4a0f-ae4e-6e9d59ad23da/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
247e93d65c955ab4bec180868a79f2e7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1798044403405684736