Poliedros e o Teorema de Euler
Autor(a) principal: | |
---|---|
Data de Publicação: | 2014 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000003khz |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tde/2970 |
Resumo: | This work aims is to demonstrate the Euler's Theorem for polyhedra, given by the equation V A + F = 2, where V; A and F are the numbers of vertices, edges and faces, respectively, the polyhedron. A historical survey of the main characters who contributed to the theme was elaborated. De nitions and properties of polygons and polyhedra were given. The statements were constructed in three distinct ways. The rst by Cauchy, commented by Professor Elon Lages Lima. This statement is valid for any polyhedron homeomorphic to a sphere and has the path planning of the polyhedron withdrawing one of its faces. The second statement was prepared by the professor Zoroastro Azambuja Filho, valid for any convex polyhedron, and its path projection of the polyhedron on a plane and comparison of the internal angles of polygons with projection angles of the polygon faces. The third statements was presented by Legendre, also valid for any convex polyhedron, and its path in the projection of a spherical polyhedron surface. We use the Girard's Formula, the sum of the interior angles of a spherical triangle, to complete the demonstration. This work also suggests methods of applying the proof of Euler's Theorem in the classroom for high school students, and resolution of vestibular exercises involving the subject. |
id |
UFG-2_47d4367f4a1f5e891da87b83a7611ea4 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tde/2970 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Tonon, Durval Joséhttp://lattes.cnpq.br/3688981956532711Tonon, Durval JoséSouza, Flávio Raimundo deLemes, Max Valériohttp://lattes.cnpq.br/0972801903052237Parreira, José Roberto Penachia2014-08-29T20:47:14Z2014-08-292014-03-21Parreira, José Roberto Penachia - Poliedros e o Teorema de Euler - 2014 - 80 f. - Dissertação - Programa de Pós-graduação em Matemática (IME) - Universidade Federal de Goiás - Goiânia - Goiás - Brasil.http://repositorio.bc.ufg.br/tede/handle/tde/2970ark:/38995/0013000003khzThis work aims is to demonstrate the Euler's Theorem for polyhedra, given by the equation V A + F = 2, where V; A and F are the numbers of vertices, edges and faces, respectively, the polyhedron. A historical survey of the main characters who contributed to the theme was elaborated. De nitions and properties of polygons and polyhedra were given. The statements were constructed in three distinct ways. The rst by Cauchy, commented by Professor Elon Lages Lima. This statement is valid for any polyhedron homeomorphic to a sphere and has the path planning of the polyhedron withdrawing one of its faces. The second statement was prepared by the professor Zoroastro Azambuja Filho, valid for any convex polyhedron, and its path projection of the polyhedron on a plane and comparison of the internal angles of polygons with projection angles of the polygon faces. The third statements was presented by Legendre, also valid for any convex polyhedron, and its path in the projection of a spherical polyhedron surface. We use the Girard's Formula, the sum of the interior angles of a spherical triangle, to complete the demonstration. This work also suggests methods of applying the proof of Euler's Theorem in the classroom for high school students, and resolution of vestibular exercises involving the subject.Este trabalho tem por objetivo a demonstra c~ao do Teorema de Euler para poliedros, dado pela equa ção V A + F = 2, onde V; A e F são os n úmeros de v értices, arestas e faces, respectivamente, do poliedro. Foi elaborada uma pesquisa hist orica dos principais personagens que contribuiram para o tema. Foram dadas de ni ções e propriedades de pol ígonos e poliedros. As demonstra ções foram constru ídas em três caminhos distintos. A primeira por Cauchy, comentada pelo professor Elon Lages Lima. Esta demonstra ção é v álida para qualquer poliedro homeomorfo a uma esfera e tem como caminho a plani fica ção do poliedro retirando-se uma de suas faces. A segunda demonstra c~ao foi elaborada pelo professor Zoroastro Azambuja Filho, v álida para qualquer poliedro convexo e tem como caminho a proje ção do poliedro num plano e a compara c~ao dos ângulos internos dos pol ígonos da proje ção com os ângulos dos pol gonos das faces. A terceira demonstra c~ao foi apresentada por Legendre, tamb ém v álida para qualquer poliedro convexo e tem como caminho a projeção do poliedro em uma superf ície esf érica. Utiliza-se a F ormula de Girard, da soma dos ângulos internos de um tri^angulo esf érico, para concluir a demonstra ção. Este trabalho tamb ém sugere metodologias de aplica ção da demonstração do Teorema de Euler em sala de aula, para alunos do Ensino M édio, e resolu ção de exercí cios de vestibulares envolvendo o tema.Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-08-29T20:47:14Z No. of bitstreams: 2 Poliedros_E_Teorema_de_Euler.pdf: 4810573 bytes, checksum: f1f57ad45cfd7dc575fe3c3e963b24c6 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2014-08-29T20:47:14Z (GMT). No. of bitstreams: 2 Poliedros_E_Teorema_de_Euler.pdf: 4810573 bytes, checksum: f1f57ad45cfd7dc575fe3c3e963b24c6 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2014-03-21Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/6760/Poliedros_E_Teorema_de_Euler.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)[1] Garbi, Gilberto Geraldo A rainha das Ciências, Editora Livraria da Física, 5a Edição (2001). São Paulo. [2] Barbosa, J. L. M. Geometria Euclidiana Plana. Sociedade Brasileira de Matematica, 2004. [3] Lima, Elon Lages Meu Professor de Matematica e outras histórias, SBM, Edição 1991. Rio de Janeiro [4] Lima, Elon Lages. Carvalho, Paulo Cezar Pinto. Wagner, Eduardo. Morgado, Augusto César. A Matemática do Ensino Médio - Volume 2, SBM Coleção do Professor de Matematica. 6a Edição (2006). Rio de Janeiro. [5] Euclides Os elementos, Editora Unesp, tradução de Irineu Bicudo, 2009. Rio de Janeiro. [6] SBM Revista do Professor de Matemática n_ 03 [7] SBM Revista do Professor de Matemática n_ 05 [8] Iezzi, Gelson. Dolce, Osvaldo. Degenszajn, David. Perigo, Roberto. Matematica, Volume Unico, Editora Atual. 5a Edição, 2011. São Paulo. [9] Mello, José Luiz Pastore Matemática: construção e significado, Volume Único, Editora Moderna. 1a Edição, 2005. São Paulo. [10] Lima, Elon Lages. Elementos de Topologia Geral Editora da Universidade de São Paulo, 1970, Rio de Janeiro. [11] Lima, Elon Lages. Espaços Métricos 2a Edição, Editora do IMPA, 1983, Rio de Janeiro. [12] Giovanni, José Ruy. Bonjorno, José Roberto. Matemática: uma nova abordagem Volume 2, Editora FTD, 2011, São Paulo. [13] Dante, Luiz Roberto Matemática: contexto e aplicações Volume 2, Editora Ática, 2011, São Paulo. [14] Usberco, João. Salvador, Edgard Química: essencial Volume Unico, 8a Edição, Editora Saraiva, 2010, São Paulo. [15] Silva, Edvaldo Lima da. Sítio: http://sorzal-df.fc.unesp.br/ edvaldo/ projecao.htm, acessado em 30/01/2014. [16] Lei n_ 9.394 de 20 de dezembro de 1996 - Lei de Diretrizes e Bases da Educação Nacional. [17] Parâmetros Curriculares Nacionais: Terceiro e Quarto Ciclos do Ensino Fundamental. Brasília, MEC/SEF, 1998. [18] Parâmetros Curriculares Nacionais: Ensino Médio. Brasília, MEC/SEMT, 1998. [19] Parâmetros Curriculares Nacionais + Ensino Médio - Orientações Curriculares Complementares aos Parâmetros Curriculares Nacionais, MEC/SEMT, 2002.6600717948137941247600600600600-426877751233515201583989707851798577902075167498588264571http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessPolígonoTeorema de EulerPoliedroAplica ções do Teorema de EulerEuler’s TheoremPolygonPolyhedronApplications of Euler’s TheoremMATEMATICA::MATEMATICA APLICADAPoliedros e o Teorema de EulerPolyhedron and Euler's Theoreminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82142http://repositorio.bc.ufg.br/tede/bitstreams/3754ccf3-db6f-46a3-8012-84b05f2bbd06/download232e528055260031f4e2af4136033daaMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/be836065-5664-406a-adc8-02486938a262/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822117http://repositorio.bc.ufg.br/tede/bitstreams/a2507e44-d280-48a4-b570-411f9b716ca1/downloaddd6580d2d5007383f0e67b904850adc9MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/5812f0ae-a946-4efc-939a-29b2c972e4ba/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALPoliedros_E_Teorema_de_Euler.pdfPoliedros_E_Teorema_de_Euler.pdfDissertaçãoapplication/pdf4810573http://repositorio.bc.ufg.br/tede/bitstreams/cd58f7aa-7e07-4337-bf70-5d8e37a7bbdf/downloadf1f57ad45cfd7dc575fe3c3e963b24c6MD55TEXTPoliedros_E_Teorema_de_Euler.pdf.txtPoliedros_E_Teorema_de_Euler.pdf.txtExtracted Texttext/plain111781http://repositorio.bc.ufg.br/tede/bitstreams/77294e59-cd3f-4429-b5d3-ecff3db30821/download2d11b3f2287191664f5af41e6ad1d344MD56THUMBNAILPoliedros_E_Teorema_de_Euler.pdf.jpgPoliedros_E_Teorema_de_Euler.pdf.jpgGenerated Thumbnailimage/jpeg3723http://repositorio.bc.ufg.br/tede/bitstreams/af89ac56-2919-4226-a75d-589b107ac849/download4215cd62ac8012b63c5f8edfd397a7bcMD57tde/29702014-09-17 18:18:00.551http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso abertoopen.accessoai:repositorio.bc.ufg.br:tde/2970http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2014-09-17T21:18Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBYWFggKFNpZ2xhIGRhIFVuaXZlcnNpZGFkZSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSBVTklWRVJTSURBREUsIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIFRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4K |
dc.title.por.fl_str_mv |
Poliedros e o Teorema de Euler |
dc.title.alternative.eng.fl_str_mv |
Polyhedron and Euler's Theorem |
title |
Poliedros e o Teorema de Euler |
spellingShingle |
Poliedros e o Teorema de Euler Parreira, José Roberto Penachia Polígono Teorema de Euler Poliedro Aplica ções do Teorema de Euler Euler’s Theorem Polygon Polyhedron Applications of Euler’s Theorem MATEMATICA::MATEMATICA APLICADA |
title_short |
Poliedros e o Teorema de Euler |
title_full |
Poliedros e o Teorema de Euler |
title_fullStr |
Poliedros e o Teorema de Euler |
title_full_unstemmed |
Poliedros e o Teorema de Euler |
title_sort |
Poliedros e o Teorema de Euler |
author |
Parreira, José Roberto Penachia |
author_facet |
Parreira, José Roberto Penachia |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Tonon, Durval José |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3688981956532711 |
dc.contributor.referee1.fl_str_mv |
Tonon, Durval José |
dc.contributor.referee2.fl_str_mv |
Souza, Flávio Raimundo de |
dc.contributor.referee3.fl_str_mv |
Lemes, Max Valério |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0972801903052237 |
dc.contributor.author.fl_str_mv |
Parreira, José Roberto Penachia |
contributor_str_mv |
Tonon, Durval José Tonon, Durval José Souza, Flávio Raimundo de Lemes, Max Valério |
dc.subject.por.fl_str_mv |
Polígono Teorema de Euler Poliedro Aplica ções do Teorema de Euler |
topic |
Polígono Teorema de Euler Poliedro Aplica ções do Teorema de Euler Euler’s Theorem Polygon Polyhedron Applications of Euler’s Theorem MATEMATICA::MATEMATICA APLICADA |
dc.subject.eng.fl_str_mv |
Euler’s Theorem Polygon Polyhedron Applications of Euler’s Theorem |
dc.subject.cnpq.fl_str_mv |
MATEMATICA::MATEMATICA APLICADA |
description |
This work aims is to demonstrate the Euler's Theorem for polyhedra, given by the equation V A + F = 2, where V; A and F are the numbers of vertices, edges and faces, respectively, the polyhedron. A historical survey of the main characters who contributed to the theme was elaborated. De nitions and properties of polygons and polyhedra were given. The statements were constructed in three distinct ways. The rst by Cauchy, commented by Professor Elon Lages Lima. This statement is valid for any polyhedron homeomorphic to a sphere and has the path planning of the polyhedron withdrawing one of its faces. The second statement was prepared by the professor Zoroastro Azambuja Filho, valid for any convex polyhedron, and its path projection of the polyhedron on a plane and comparison of the internal angles of polygons with projection angles of the polygon faces. The third statements was presented by Legendre, also valid for any convex polyhedron, and its path in the projection of a spherical polyhedron surface. We use the Girard's Formula, the sum of the interior angles of a spherical triangle, to complete the demonstration. This work also suggests methods of applying the proof of Euler's Theorem in the classroom for high school students, and resolution of vestibular exercises involving the subject. |
publishDate |
2014 |
dc.date.accessioned.fl_str_mv |
2014-08-29T20:47:14Z |
dc.date.available.fl_str_mv |
2014-08-29 |
dc.date.issued.fl_str_mv |
2014-03-21 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Parreira, José Roberto Penachia - Poliedros e o Teorema de Euler - 2014 - 80 f. - Dissertação - Programa de Pós-graduação em Matemática (IME) - Universidade Federal de Goiás - Goiânia - Goiás - Brasil. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tde/2970 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000003khz |
identifier_str_mv |
Parreira, José Roberto Penachia - Poliedros e o Teorema de Euler - 2014 - 80 f. - Dissertação - Programa de Pós-graduação em Matemática (IME) - Universidade Federal de Goiás - Goiânia - Goiás - Brasil. ark:/38995/0013000003khz |
url |
http://repositorio.bc.ufg.br/tede/handle/tde/2970 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
8398970785179857790 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.relation.references.por.fl_str_mv |
[1] Garbi, Gilberto Geraldo A rainha das Ciências, Editora Livraria da Física, 5a Edição (2001). São Paulo. [2] Barbosa, J. L. M. Geometria Euclidiana Plana. Sociedade Brasileira de Matematica, 2004. [3] Lima, Elon Lages Meu Professor de Matematica e outras histórias, SBM, Edição 1991. Rio de Janeiro [4] Lima, Elon Lages. Carvalho, Paulo Cezar Pinto. Wagner, Eduardo. Morgado, Augusto César. A Matemática do Ensino Médio - Volume 2, SBM Coleção do Professor de Matematica. 6a Edição (2006). Rio de Janeiro. [5] Euclides Os elementos, Editora Unesp, tradução de Irineu Bicudo, 2009. Rio de Janeiro. [6] SBM Revista do Professor de Matemática n_ 03 [7] SBM Revista do Professor de Matemática n_ 05 [8] Iezzi, Gelson. Dolce, Osvaldo. Degenszajn, David. Perigo, Roberto. Matematica, Volume Unico, Editora Atual. 5a Edição, 2011. São Paulo. [9] Mello, José Luiz Pastore Matemática: construção e significado, Volume Único, Editora Moderna. 1a Edição, 2005. São Paulo. [10] Lima, Elon Lages. Elementos de Topologia Geral Editora da Universidade de São Paulo, 1970, Rio de Janeiro. [11] Lima, Elon Lages. Espaços Métricos 2a Edição, Editora do IMPA, 1983, Rio de Janeiro. [12] Giovanni, José Ruy. Bonjorno, José Roberto. Matemática: uma nova abordagem Volume 2, Editora FTD, 2011, São Paulo. [13] Dante, Luiz Roberto Matemática: contexto e aplicações Volume 2, Editora Ática, 2011, São Paulo. [14] Usberco, João. Salvador, Edgard Química: essencial Volume Unico, 8a Edição, Editora Saraiva, 2010, São Paulo. [15] Silva, Edvaldo Lima da. Sítio: http://sorzal-df.fc.unesp.br/ edvaldo/ projecao.htm, acessado em 30/01/2014. [16] Lei n_ 9.394 de 20 de dezembro de 1996 - Lei de Diretrizes e Bases da Educação Nacional. [17] Parâmetros Curriculares Nacionais: Terceiro e Quarto Ciclos do Ensino Fundamental. Brasília, MEC/SEF, 1998. [18] Parâmetros Curriculares Nacionais: Ensino Médio. Brasília, MEC/SEMT, 1998. [19] Parâmetros Curriculares Nacionais + Ensino Médio - Orientações Curriculares Complementares aos Parâmetros Curriculares Nacionais, MEC/SEMT, 2002. |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/3754ccf3-db6f-46a3-8012-84b05f2bbd06/download http://repositorio.bc.ufg.br/tede/bitstreams/be836065-5664-406a-adc8-02486938a262/download http://repositorio.bc.ufg.br/tede/bitstreams/a2507e44-d280-48a4-b570-411f9b716ca1/download http://repositorio.bc.ufg.br/tede/bitstreams/5812f0ae-a946-4efc-939a-29b2c972e4ba/download http://repositorio.bc.ufg.br/tede/bitstreams/cd58f7aa-7e07-4337-bf70-5d8e37a7bbdf/download http://repositorio.bc.ufg.br/tede/bitstreams/77294e59-cd3f-4429-b5d3-ecff3db30821/download http://repositorio.bc.ufg.br/tede/bitstreams/af89ac56-2919-4226-a75d-589b107ac849/download |
bitstream.checksum.fl_str_mv |
232e528055260031f4e2af4136033daa 4afdbb8c545fd630ea7db775da747b2f dd6580d2d5007383f0e67b904850adc9 9da0b6dfac957114c6a7714714b86306 f1f57ad45cfd7dc575fe3c3e963b24c6 2d11b3f2287191664f5af41e6ad1d344 4215cd62ac8012b63c5f8edfd397a7bc |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172547435560960 |