Influência de variáveis macroclimáticas sobre as principais doenças do arroz
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000000h49 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/7405 |
Resumo: | The influence of climatic variables on rice diseases was assessed in Brazil. Firstly, it was necessary to validate climate data from remote sensoring, retrieved from NASA’s database Prediction of Worldwide Energy Resource (POWER). POWER data were compared to climate records of surface stations from the National Institute of Meteorology (INMET). Climate data consisted of a time series (2004-2014) of monthly average temperatures and rainfall. Validation tests were carried out with Pearson’s coefficient of correlation and adjustment of linear regression models between the satellite data and surface stations. Further, data accuracy was checked according to average absolute error, root mean square deviation and concordance index. Monthly rainfall from most regions satisfactory correlated with Pearson coefficients between 0.75 and 0.95 (P<0.05). In contrast, maximum and minimum temperatures recorded by satellites showed irregular results that vary by region. In these cases, remote sensing did not detect extreme weather events, such as heavy rainfall or drought. Monthly rainfall comparisons also showed the most consistent results for all regions in accuracy tests. The endorsed data supported the next stage of this work, regarding the effects of climate variables on rice diseases. This investigation counted on a historical series of disease severities recorded in field tests, carried out between 1983 and 2014. Climatic data from INMET, EMBRAPA and NASA/POWER was arranged in a matrix of environmental variables, and tested for correspondence with disease severities recorded in 15 sites for at least eight years. Redundant climate variables were eliminated by principal component analysis. With structured data disposed in two datasets of climate (explanatory variables) and disease severity and productivity (response variables), canonical correlation analysis was performed (CCA) by location and by regions. The influence of climate on disease severity was demonstrated in only five sites, according to CCA models significant at 5%, with their first two axes explaining over than 50% of explanatory variables. In such sites, the total variation in disease severity was partially explained by climate variables. In the regional approach, climate variables did not significantly influence rice diseases in the North Region. Nevertheless, significant models demonstrated the correlation between climatic variables and disease in the Center-West and Northeast, despite the small percentage of explanation by the first two axes. In general, higher disease severity was related to rainfall and lower minimum temperatures during the reproductive stage of rice plots. In all cases, yield was not related to environmental variables. |
id |
UFG-2_532c199aeb611a02df6ff67cdf981226 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/7405 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Lobo Junior, Murillohttp://lattes.cnpq.br/3352833548668460Lobo Junior, MurilloFilippi, Marta Cristina Corsi deHeinemann, Alexandre BryanCastro, Adriano Pereira dehttp://lattes.cnpq.br/9234568650182401Aguiar, Jordene Teixeira de2017-06-02T11:42:03Z2016-03-03AGUIAR, J. T. Influência de variáveis macroclimáticas sobre as principais doenças do arroz. 2016. 74 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Goiás, Goiânia, 2016.http://repositorio.bc.ufg.br/tede/handle/tede/7405ark:/38995/0013000000h49The influence of climatic variables on rice diseases was assessed in Brazil. Firstly, it was necessary to validate climate data from remote sensoring, retrieved from NASA’s database Prediction of Worldwide Energy Resource (POWER). POWER data were compared to climate records of surface stations from the National Institute of Meteorology (INMET). Climate data consisted of a time series (2004-2014) of monthly average temperatures and rainfall. Validation tests were carried out with Pearson’s coefficient of correlation and adjustment of linear regression models between the satellite data and surface stations. Further, data accuracy was checked according to average absolute error, root mean square deviation and concordance index. Monthly rainfall from most regions satisfactory correlated with Pearson coefficients between 0.75 and 0.95 (P<0.05). In contrast, maximum and minimum temperatures recorded by satellites showed irregular results that vary by region. In these cases, remote sensing did not detect extreme weather events, such as heavy rainfall or drought. Monthly rainfall comparisons also showed the most consistent results for all regions in accuracy tests. The endorsed data supported the next stage of this work, regarding the effects of climate variables on rice diseases. This investigation counted on a historical series of disease severities recorded in field tests, carried out between 1983 and 2014. Climatic data from INMET, EMBRAPA and NASA/POWER was arranged in a matrix of environmental variables, and tested for correspondence with disease severities recorded in 15 sites for at least eight years. Redundant climate variables were eliminated by principal component analysis. With structured data disposed in two datasets of climate (explanatory variables) and disease severity and productivity (response variables), canonical correlation analysis was performed (CCA) by location and by regions. The influence of climate on disease severity was demonstrated in only five sites, according to CCA models significant at 5%, with their first two axes explaining over than 50% of explanatory variables. In such sites, the total variation in disease severity was partially explained by climate variables. In the regional approach, climate variables did not significantly influence rice diseases in the North Region. Nevertheless, significant models demonstrated the correlation between climatic variables and disease in the Center-West and Northeast, despite the small percentage of explanation by the first two axes. In general, higher disease severity was related to rainfall and lower minimum temperatures during the reproductive stage of rice plots. In all cases, yield was not related to environmental variables.Este estudo foi realizado para se verificar a influência de variáveis climáticas sobre doenças do arroz no Brasil. Inicialmente, foi necessário validar dados climáticos obtidos via sensor remoto orbital, obtidos no banco de dados Prediction of Worldwide Energy Resource (POWER) da NASA. Esses dados foram comparados aos obtidos de estações de superfície brasileiras do Instituto Nacional de Meteorologia (INMET). Os dados foram compostos de séries históricas (2004 a 2014) de médias mensais de temperaturas e precipitação. Para validação, foram estimados os coeficientes correlação de Pearson e modelos de regressão linear entre os dados estimados via satélite e obtidos via estações de superfície. Para verificação da acurácia, foram estimados o erro médio absoluto, o desvio médio quadrático e o índice de concordância. Os dados de precipitação mensal para a maioria das regiões apresentaram coeficientes de correlação satisfatórios, entre 0,75 e 0,95 (P<0,05). Já os dados de temperaturas máxima e mínima obtidos por satélites apresentaram resultados irregulares que variavam conforme a região. Nestes casos, verificou-se que os dados obtidos remotamente não detectaram eventos climáticos extremos, como chuvas ou seca intensas. As médias de precipitação mensal também apresentaram resultados mais consistentes para todas as regiões, em testes de acurácia. Os dados validados subsidiaram a segunda etapa deste trabalho, quando foram avaliados os efeitos das variáveis climáticas sobre as doenças da cultura do arroz. Contou-se com uma série histórica de dados de severidade de doença registrados entre 1983 a 2014. Os dados climáticos do INMET, Embrapa e NASA/POWER foram utilizados para compor uma matriz com variáveis ambientais, e verificação de sua correspondência com a severidade de doenças em 15 locais com séries históricas de pelo menos oito anos. Por meio da análise de componentes principais foram eliminadas as variáveis climáticas redundantes. Com dados estruturados em duas matrizes, clima (variáveis explanatórias) e severidade de doença mais produtividade (variáveis de resposta) foram realizadas análises de correspondência canônicas (CCA) por local e por regiões. Dentre os 15 locais analisados, apenas cinco apresentaram modelos significativos a 5%, com a explicação da variação dos dados pelos dois primeiros eixos acima de 50%, demostrando que, em alguns locais, a variação total da severidade das doenças é explicada parcialmente por variáveis climáticas. De acordo com as CCAs por regiões, observou-se que na região Norte as variáveis climáticas não influenciam significativamente as doenças do arroz. Por outro lado, modelos significativos demonstraram a correspondência entre as variáveis climáticas e doenças para as regiões Centro-Oeste e Nordeste, ainda que com baixa porcentagem de explicação. De modo geral, a maior severidade de doenças foi atribuída á ocorrência de chuvas e menores temperaturas mínimas durante o estádio reprodutivo da cultura. Em todos os casos, a produtividade não foi relacionada ás variáveis ambientais.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-06-02T11:41:33Z No. of bitstreams: 2 Dissertação - Jordene Teixeira de Aguiar - 2016.pdf: 3048073 bytes, checksum: b062d30a5cf4c2dd3b7a78ebc8a9e2c6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-06-02T11:42:03Z (GMT) No. of bitstreams: 2 Dissertação - Jordene Teixeira de Aguiar - 2016.pdf: 3048073 bytes, checksum: b062d30a5cf4c2dd3b7a78ebc8a9e2c6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-06-02T11:42:03Z (GMT). No. of bitstreams: 2 Dissertação - Jordene Teixeira de Aguiar - 2016.pdf: 3048073 bytes, checksum: b062d30a5cf4c2dd3b7a78ebc8a9e2c6 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-03-03Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Agronomia (EAEA)UFGBrasilEscola de Agronomia e Engenharia de Alimentos - EAEA (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessOryza sativa L.Mudanças climáticasModelagemPlanejamento agrícolaSensoriamento remotoOryza sativa L.Climate changeModellingCrop managementRemote sensingAGRONOMIA::FITOSSANIDADEInfluência de variáveis macroclimáticas sobre as principais doenças do arrozInfluence of macroclimatic variables on the main rice diseasesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis8421195611339883816006006006004500684695727928426-84498190701807419642075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/82d9fdf9-55c9-4cbf-88df-a2c86b3600b7/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/4ae204fb-305a-4021-935e-5335cfb07443/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/a3fa4837-a913-4c25-80bf-39c2bf78f66e/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Jordene Teixeira de Aguiar - 2016.pdfDissertação - Jordene Teixeira de Aguiar - 2016.pdfapplication/pdf3048073http://repositorio.bc.ufg.br/tede/bitstreams/473a6e2f-aad4-4e3c-a5c8-9c7b10732c6b/downloadb062d30a5cf4c2dd3b7a78ebc8a9e2c6MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/1bb6429a-103e-4058-808c-882a1207be37/downloadbd3efa91386c1718a7f26a329fdcb468MD51tede/74052017-06-02 08:42:04.013http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/7405http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-06-02T11:42:04Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Influência de variáveis macroclimáticas sobre as principais doenças do arroz |
dc.title.alternative.eng.fl_str_mv |
Influence of macroclimatic variables on the main rice diseases |
title |
Influência de variáveis macroclimáticas sobre as principais doenças do arroz |
spellingShingle |
Influência de variáveis macroclimáticas sobre as principais doenças do arroz Aguiar, Jordene Teixeira de Oryza sativa L. Mudanças climáticas Modelagem Planejamento agrícola Sensoriamento remoto Oryza sativa L. Climate change Modelling Crop management Remote sensing AGRONOMIA::FITOSSANIDADE |
title_short |
Influência de variáveis macroclimáticas sobre as principais doenças do arroz |
title_full |
Influência de variáveis macroclimáticas sobre as principais doenças do arroz |
title_fullStr |
Influência de variáveis macroclimáticas sobre as principais doenças do arroz |
title_full_unstemmed |
Influência de variáveis macroclimáticas sobre as principais doenças do arroz |
title_sort |
Influência de variáveis macroclimáticas sobre as principais doenças do arroz |
author |
Aguiar, Jordene Teixeira de |
author_facet |
Aguiar, Jordene Teixeira de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Lobo Junior, Murillo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3352833548668460 |
dc.contributor.referee1.fl_str_mv |
Lobo Junior, Murillo |
dc.contributor.referee2.fl_str_mv |
Filippi, Marta Cristina Corsi de |
dc.contributor.referee3.fl_str_mv |
Heinemann, Alexandre Bryan |
dc.contributor.referee4.fl_str_mv |
Castro, Adriano Pereira de |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9234568650182401 |
dc.contributor.author.fl_str_mv |
Aguiar, Jordene Teixeira de |
contributor_str_mv |
Lobo Junior, Murillo Lobo Junior, Murillo Filippi, Marta Cristina Corsi de Heinemann, Alexandre Bryan Castro, Adriano Pereira de |
dc.subject.por.fl_str_mv |
Oryza sativa L. Mudanças climáticas Modelagem Planejamento agrícola Sensoriamento remoto |
topic |
Oryza sativa L. Mudanças climáticas Modelagem Planejamento agrícola Sensoriamento remoto Oryza sativa L. Climate change Modelling Crop management Remote sensing AGRONOMIA::FITOSSANIDADE |
dc.subject.eng.fl_str_mv |
Oryza sativa L. Climate change Modelling Crop management Remote sensing |
dc.subject.cnpq.fl_str_mv |
AGRONOMIA::FITOSSANIDADE |
description |
The influence of climatic variables on rice diseases was assessed in Brazil. Firstly, it was necessary to validate climate data from remote sensoring, retrieved from NASA’s database Prediction of Worldwide Energy Resource (POWER). POWER data were compared to climate records of surface stations from the National Institute of Meteorology (INMET). Climate data consisted of a time series (2004-2014) of monthly average temperatures and rainfall. Validation tests were carried out with Pearson’s coefficient of correlation and adjustment of linear regression models between the satellite data and surface stations. Further, data accuracy was checked according to average absolute error, root mean square deviation and concordance index. Monthly rainfall from most regions satisfactory correlated with Pearson coefficients between 0.75 and 0.95 (P<0.05). In contrast, maximum and minimum temperatures recorded by satellites showed irregular results that vary by region. In these cases, remote sensing did not detect extreme weather events, such as heavy rainfall or drought. Monthly rainfall comparisons also showed the most consistent results for all regions in accuracy tests. The endorsed data supported the next stage of this work, regarding the effects of climate variables on rice diseases. This investigation counted on a historical series of disease severities recorded in field tests, carried out between 1983 and 2014. Climatic data from INMET, EMBRAPA and NASA/POWER was arranged in a matrix of environmental variables, and tested for correspondence with disease severities recorded in 15 sites for at least eight years. Redundant climate variables were eliminated by principal component analysis. With structured data disposed in two datasets of climate (explanatory variables) and disease severity and productivity (response variables), canonical correlation analysis was performed (CCA) by location and by regions. The influence of climate on disease severity was demonstrated in only five sites, according to CCA models significant at 5%, with their first two axes explaining over than 50% of explanatory variables. In such sites, the total variation in disease severity was partially explained by climate variables. In the regional approach, climate variables did not significantly influence rice diseases in the North Region. Nevertheless, significant models demonstrated the correlation between climatic variables and disease in the Center-West and Northeast, despite the small percentage of explanation by the first two axes. In general, higher disease severity was related to rainfall and lower minimum temperatures during the reproductive stage of rice plots. In all cases, yield was not related to environmental variables. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-03-03 |
dc.date.accessioned.fl_str_mv |
2017-06-02T11:42:03Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
AGUIAR, J. T. Influência de variáveis macroclimáticas sobre as principais doenças do arroz. 2016. 74 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Goiás, Goiânia, 2016. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/7405 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000000h49 |
identifier_str_mv |
AGUIAR, J. T. Influência de variáveis macroclimáticas sobre as principais doenças do arroz. 2016. 74 f. Dissertação (Mestrado em Agronomia) - Universidade Federal de Goiás, Goiânia, 2016. ark:/38995/0013000000h49 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/7405 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
842119561133988381 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
4500684695727928426 |
dc.relation.cnpq.fl_str_mv |
-8449819070180741964 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Agronomia (EAEA) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola de Agronomia e Engenharia de Alimentos - EAEA (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/82d9fdf9-55c9-4cbf-88df-a2c86b3600b7/download http://repositorio.bc.ufg.br/tede/bitstreams/4ae204fb-305a-4021-935e-5335cfb07443/download http://repositorio.bc.ufg.br/tede/bitstreams/a3fa4837-a913-4c25-80bf-39c2bf78f66e/download http://repositorio.bc.ufg.br/tede/bitstreams/473a6e2f-aad4-4e3c-a5c8-9c7b10732c6b/download http://repositorio.bc.ufg.br/tede/bitstreams/1bb6429a-103e-4058-808c-882a1207be37/download |
bitstream.checksum.fl_str_mv |
4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e b062d30a5cf4c2dd3b7a78ebc8a9e2c6 bd3efa91386c1718a7f26a329fdcb468 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172513833943040 |