Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo

Detalhes bibliográficos
Autor(a) principal: Almeida, Alexandre Barbosa de
Data de Publicação: 2016
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/00130000073tj
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/5872
Resumo: Proteins are vital for the biological functions of all living beings on Earth. However, they only have an active biological function in their native structure, which is a state of minimum energy. Therefore, protein functionality depends almost exclusively on the size and shape of its native conformation. However, less than 1% of all known proteins in the world has its structure solved. In this way, various methods for determining protein structures have been proposed, either in vitro or in silico experiments. This work proposes a new in silico method called Monte Carlo with Dominance, which addresses the problem of protein structure prediction from the point of view of ab initio and multi-objective optimization, considering both protein energetic and structural aspects. The software GROMACS was used for the ab initio treatment to perform Molecular Dynamics simulations, while the framework ProtPred-GROMACS (2PG) was used for the multi-objective optimization problem, employing genetic algorithms techniques as heuristic solutions. Monte Carlo with Dominance, in this sense, is like a variant of the traditional Monte Carlo Metropolis method. The aim is to check if protein tertiary structure prediction is improved when structural aspects are taken into account. The energy criterion of Metropolis and energy and structural criteria of Dominance were compared using RMSD calculation between the predicted and native structures. It was found that Monte Carlo with Dominance obtained better solutions for two of three proteins analyzed, reaching a difference about 53% in relation to the prediction by Metropolis.
id UFG-2_5b1cfb9e0d6e344337b1f8f31680649b
oai_identifier_str oai:repositorio.bc.ufg.br:tede/5872
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Soares, Telma Woerle de Limahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4717638T6Faccioli, Rodrigo Antoniohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4710519J5Soares, Telma Woerle de LimaFacciolo, Rodrigo AntonioMartins, Wellignton SantosLeão, Salviano de Araújohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8716870A0Almeida, Alexandre Barbosa de2016-08-09T11:57:53Z2016-06-17ALMEIDA, A. B. Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo. 2016. 129 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2016.http://repositorio.bc.ufg.br/tede/handle/tede/5872ark:/38995/00130000073tjProteins are vital for the biological functions of all living beings on Earth. However, they only have an active biological function in their native structure, which is a state of minimum energy. Therefore, protein functionality depends almost exclusively on the size and shape of its native conformation. However, less than 1% of all known proteins in the world has its structure solved. In this way, various methods for determining protein structures have been proposed, either in vitro or in silico experiments. This work proposes a new in silico method called Monte Carlo with Dominance, which addresses the problem of protein structure prediction from the point of view of ab initio and multi-objective optimization, considering both protein energetic and structural aspects. The software GROMACS was used for the ab initio treatment to perform Molecular Dynamics simulations, while the framework ProtPred-GROMACS (2PG) was used for the multi-objective optimization problem, employing genetic algorithms techniques as heuristic solutions. Monte Carlo with Dominance, in this sense, is like a variant of the traditional Monte Carlo Metropolis method. The aim is to check if protein tertiary structure prediction is improved when structural aspects are taken into account. The energy criterion of Metropolis and energy and structural criteria of Dominance were compared using RMSD calculation between the predicted and native structures. It was found that Monte Carlo with Dominance obtained better solutions for two of three proteins analyzed, reaching a difference about 53% in relation to the prediction by Metropolis.As proteínas são vitais para as funções biológicas de todos os seres na Terra. Entretanto, somente apresentam função biológica ativa quando encontram-se em sua estrutura nativa, que é o seu estado de mínima energia. Portanto, a funcionalidade de uma proteína depende, quase que exclusivamente, do tamanho e da forma de sua conformação nativa. Porém, de todas as proteínas conhecidas no mundo, menos de 1% tem a sua estrutura resolvida. Deste modo, vários métodos de determinação de estruturas de proteínas têm sido propostos, tanto para experimentos in vitro quanto in silico. Este trabalho propõe um novo método in silico denominado Monte Carlo com Dominância, o qual aborda o problema da predição de estrutura de proteínas sob o ponto de vista ab initio e de otimização multiobjetivo, considerando, simultaneamente, os aspectos energéticos e estruturais da proteína. Para o tratamento ab initio utiliza-se o software GROMACS para executar as simulações de Dinâmica Molecular, enquanto que para o problema da otimização multiobjetivo emprega-se o framework ProtPred-GROMACS (2PG), o qual utiliza algoritmos genéticos como técnica de soluções heurísticas. O Monte Carlo com Dominância, nesse sentido, é como uma variante do tradicional método de Monte Carlo Metropolis. Assim, o objetivo é o de verificar se a predição da estrutura terciária de proteínas é aprimorada levando-se em conta também os aspectos estruturais. O critério energético de Metropolis e os critérios energéticos e estruturais da Dominância foram comparados empregando o cálculo de RMSD entre as estruturas preditas e as nativas. Foi verificado que o método de Monte Carlo com Dominância obteve melhores soluções para duas de três proteínas analisadas, chegando a cerca de 53% de diferença da predição por Metropolis.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-08-05T17:38:42Z No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-09T11:57:53Z (GMT) No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2016-08-09T11:57:53Z (GMT). No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-06-17Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessPredição da estrutura terciária de proteínasOtimização multiobjetivoMonte carlo metropolisMonte carlo com dominânciaProtein tertiary structure predictionMulti-objective optimizationMonte carlo metropolisMonte carlo with dominanceCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOPredição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carloProtein tertiary structure prediction with multi-objective techniques in monte carlo algorithminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-77122667346336447683671711205811204509-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/6b1dfa96-25bf-4f15-967a-260a6931a7d0/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://repositorio.bc.ufg.br/tede/bitstreams/6ed6015b-9916-49f7-bfcf-1390d5769bdf/download321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/a8739425-2912-4d07-96b1-90cc490acf37/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/f1300597-26e7-4389-a22d-0d9224971ff8/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Alexandre Barbosa de Almeida - 2016.pdfDissertação - Alexandre Barbosa de Almeida - 2016.pdfapplication/pdf11943401http://repositorio.bc.ufg.br/tede/bitstreams/7060a787-ff1e-43b6-a2f7-2481f054bdfa/download94f2e941bbde05e098c40f40f0f2f69cMD55tede/58722016-08-09 08:57:53.968http://creativecommons.org/licenses/by/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/5872http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2016-08-09T11:57:53Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo
dc.title.alternative.eng.fl_str_mv Protein tertiary structure prediction with multi-objective techniques in monte carlo algorithm
title Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo
spellingShingle Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo
Almeida, Alexandre Barbosa de
Predição da estrutura terciária de proteínas
Otimização multiobjetivo
Monte carlo metropolis
Monte carlo com dominância
Protein tertiary structure prediction
Multi-objective optimization
Monte carlo metropolis
Monte carlo with dominance
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo
title_full Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo
title_fullStr Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo
title_full_unstemmed Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo
title_sort Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo
author Almeida, Alexandre Barbosa de
author_facet Almeida, Alexandre Barbosa de
author_role author
dc.contributor.advisor1.fl_str_mv Soares, Telma Woerle de Lima
dc.contributor.advisor1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4717638T6
dc.contributor.advisor-co1.fl_str_mv Faccioli, Rodrigo Antonio
dc.contributor.advisor-co1Lattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4710519J5
dc.contributor.referee1.fl_str_mv Soares, Telma Woerle de Lima
dc.contributor.referee2.fl_str_mv Facciolo, Rodrigo Antonio
dc.contributor.referee3.fl_str_mv Martins, Wellignton Santos
dc.contributor.referee4.fl_str_mv Leão, Salviano de Araújo
dc.contributor.authorLattes.fl_str_mv http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8716870A0
dc.contributor.author.fl_str_mv Almeida, Alexandre Barbosa de
contributor_str_mv Soares, Telma Woerle de Lima
Faccioli, Rodrigo Antonio
Soares, Telma Woerle de Lima
Facciolo, Rodrigo Antonio
Martins, Wellignton Santos
Leão, Salviano de Araújo
dc.subject.por.fl_str_mv Predição da estrutura terciária de proteínas
Otimização multiobjetivo
Monte carlo metropolis
Monte carlo com dominância
topic Predição da estrutura terciária de proteínas
Otimização multiobjetivo
Monte carlo metropolis
Monte carlo com dominância
Protein tertiary structure prediction
Multi-objective optimization
Monte carlo metropolis
Monte carlo with dominance
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Protein tertiary structure prediction
Multi-objective optimization
Monte carlo metropolis
Monte carlo with dominance
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Proteins are vital for the biological functions of all living beings on Earth. However, they only have an active biological function in their native structure, which is a state of minimum energy. Therefore, protein functionality depends almost exclusively on the size and shape of its native conformation. However, less than 1% of all known proteins in the world has its structure solved. In this way, various methods for determining protein structures have been proposed, either in vitro or in silico experiments. This work proposes a new in silico method called Monte Carlo with Dominance, which addresses the problem of protein structure prediction from the point of view of ab initio and multi-objective optimization, considering both protein energetic and structural aspects. The software GROMACS was used for the ab initio treatment to perform Molecular Dynamics simulations, while the framework ProtPred-GROMACS (2PG) was used for the multi-objective optimization problem, employing genetic algorithms techniques as heuristic solutions. Monte Carlo with Dominance, in this sense, is like a variant of the traditional Monte Carlo Metropolis method. The aim is to check if protein tertiary structure prediction is improved when structural aspects are taken into account. The energy criterion of Metropolis and energy and structural criteria of Dominance were compared using RMSD calculation between the predicted and native structures. It was found that Monte Carlo with Dominance obtained better solutions for two of three proteins analyzed, reaching a difference about 53% in relation to the prediction by Metropolis.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-08-09T11:57:53Z
dc.date.issued.fl_str_mv 2016-06-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALMEIDA, A. B. Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo. 2016. 129 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2016.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/5872
dc.identifier.dark.fl_str_mv ark:/38995/00130000073tj
identifier_str_mv ALMEIDA, A. B. Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo. 2016. 129 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2016.
ark:/38995/00130000073tj
url http://repositorio.bc.ufg.br/tede/handle/tede/5872
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3303550325223384799
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 3671711205811204509
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/6b1dfa96-25bf-4f15-967a-260a6931a7d0/download
http://repositorio.bc.ufg.br/tede/bitstreams/6ed6015b-9916-49f7-bfcf-1390d5769bdf/download
http://repositorio.bc.ufg.br/tede/bitstreams/a8739425-2912-4d07-96b1-90cc490acf37/download
http://repositorio.bc.ufg.br/tede/bitstreams/f1300597-26e7-4389-a22d-0d9224971ff8/download
http://repositorio.bc.ufg.br/tede/bitstreams/7060a787-ff1e-43b6-a2f7-2481f054bdfa/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
321f3992dd3875151d8801b773ab32ed
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
94f2e941bbde05e098c40f40f0f2f69c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172585922494464