Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/00130000073tj |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/5872 |
Resumo: | Proteins are vital for the biological functions of all living beings on Earth. However, they only have an active biological function in their native structure, which is a state of minimum energy. Therefore, protein functionality depends almost exclusively on the size and shape of its native conformation. However, less than 1% of all known proteins in the world has its structure solved. In this way, various methods for determining protein structures have been proposed, either in vitro or in silico experiments. This work proposes a new in silico method called Monte Carlo with Dominance, which addresses the problem of protein structure prediction from the point of view of ab initio and multi-objective optimization, considering both protein energetic and structural aspects. The software GROMACS was used for the ab initio treatment to perform Molecular Dynamics simulations, while the framework ProtPred-GROMACS (2PG) was used for the multi-objective optimization problem, employing genetic algorithms techniques as heuristic solutions. Monte Carlo with Dominance, in this sense, is like a variant of the traditional Monte Carlo Metropolis method. The aim is to check if protein tertiary structure prediction is improved when structural aspects are taken into account. The energy criterion of Metropolis and energy and structural criteria of Dominance were compared using RMSD calculation between the predicted and native structures. It was found that Monte Carlo with Dominance obtained better solutions for two of three proteins analyzed, reaching a difference about 53% in relation to the prediction by Metropolis. |
id |
UFG-2_5b1cfb9e0d6e344337b1f8f31680649b |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/5872 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Soares, Telma Woerle de Limahttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4717638T6Faccioli, Rodrigo Antoniohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4710519J5Soares, Telma Woerle de LimaFacciolo, Rodrigo AntonioMartins, Wellignton SantosLeão, Salviano de Araújohttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8716870A0Almeida, Alexandre Barbosa de2016-08-09T11:57:53Z2016-06-17ALMEIDA, A. B. Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo. 2016. 129 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2016.http://repositorio.bc.ufg.br/tede/handle/tede/5872ark:/38995/00130000073tjProteins are vital for the biological functions of all living beings on Earth. However, they only have an active biological function in their native structure, which is a state of minimum energy. Therefore, protein functionality depends almost exclusively on the size and shape of its native conformation. However, less than 1% of all known proteins in the world has its structure solved. In this way, various methods for determining protein structures have been proposed, either in vitro or in silico experiments. This work proposes a new in silico method called Monte Carlo with Dominance, which addresses the problem of protein structure prediction from the point of view of ab initio and multi-objective optimization, considering both protein energetic and structural aspects. The software GROMACS was used for the ab initio treatment to perform Molecular Dynamics simulations, while the framework ProtPred-GROMACS (2PG) was used for the multi-objective optimization problem, employing genetic algorithms techniques as heuristic solutions. Monte Carlo with Dominance, in this sense, is like a variant of the traditional Monte Carlo Metropolis method. The aim is to check if protein tertiary structure prediction is improved when structural aspects are taken into account. The energy criterion of Metropolis and energy and structural criteria of Dominance were compared using RMSD calculation between the predicted and native structures. It was found that Monte Carlo with Dominance obtained better solutions for two of three proteins analyzed, reaching a difference about 53% in relation to the prediction by Metropolis.As proteínas são vitais para as funções biológicas de todos os seres na Terra. Entretanto, somente apresentam função biológica ativa quando encontram-se em sua estrutura nativa, que é o seu estado de mínima energia. Portanto, a funcionalidade de uma proteína depende, quase que exclusivamente, do tamanho e da forma de sua conformação nativa. Porém, de todas as proteínas conhecidas no mundo, menos de 1% tem a sua estrutura resolvida. Deste modo, vários métodos de determinação de estruturas de proteínas têm sido propostos, tanto para experimentos in vitro quanto in silico. Este trabalho propõe um novo método in silico denominado Monte Carlo com Dominância, o qual aborda o problema da predição de estrutura de proteínas sob o ponto de vista ab initio e de otimização multiobjetivo, considerando, simultaneamente, os aspectos energéticos e estruturais da proteína. Para o tratamento ab initio utiliza-se o software GROMACS para executar as simulações de Dinâmica Molecular, enquanto que para o problema da otimização multiobjetivo emprega-se o framework ProtPred-GROMACS (2PG), o qual utiliza algoritmos genéticos como técnica de soluções heurísticas. O Monte Carlo com Dominância, nesse sentido, é como uma variante do tradicional método de Monte Carlo Metropolis. Assim, o objetivo é o de verificar se a predição da estrutura terciária de proteínas é aprimorada levando-se em conta também os aspectos estruturais. O critério energético de Metropolis e os critérios energéticos e estruturais da Dominância foram comparados empregando o cálculo de RMSD entre as estruturas preditas e as nativas. Foi verificado que o método de Monte Carlo com Dominância obteve melhores soluções para duas de três proteínas analisadas, chegando a cerca de 53% de diferença da predição por Metropolis.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2016-08-05T17:38:42Z No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-09T11:57:53Z (GMT) No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2016-08-09T11:57:53Z (GMT). No. of bitstreams: 2 Dissertação - Alexandre Barbosa de Almeida - 2016.pdf: 11943401 bytes, checksum: 94f2e941bbde05e098c40f40f0f2f69c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-06-17Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by/4.0/info:eu-repo/semantics/openAccessPredição da estrutura terciária de proteínasOtimização multiobjetivoMonte carlo metropolisMonte carlo com dominânciaProtein tertiary structure predictionMulti-objective optimizationMonte carlo metropolisMonte carlo with dominanceCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOPredição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carloProtein tertiary structure prediction with multi-objective techniques in monte carlo algorithminfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis-3303550325223384799600600600600-77122667346336447683671711205811204509-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/6b1dfa96-25bf-4f15-967a-260a6931a7d0/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-843http://repositorio.bc.ufg.br/tede/bitstreams/6ed6015b-9916-49f7-bfcf-1390d5769bdf/download321f3992dd3875151d8801b773ab32edMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/a8739425-2912-4d07-96b1-90cc490acf37/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/f1300597-26e7-4389-a22d-0d9224971ff8/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Alexandre Barbosa de Almeida - 2016.pdfDissertação - Alexandre Barbosa de Almeida - 2016.pdfapplication/pdf11943401http://repositorio.bc.ufg.br/tede/bitstreams/7060a787-ff1e-43b6-a2f7-2481f054bdfa/download94f2e941bbde05e098c40f40f0f2f69cMD55tede/58722016-08-09 08:57:53.968http://creativecommons.org/licenses/by/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/5872http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2016-08-09T11:57:53Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo |
dc.title.alternative.eng.fl_str_mv |
Protein tertiary structure prediction with multi-objective techniques in monte carlo algorithm |
title |
Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo |
spellingShingle |
Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo Almeida, Alexandre Barbosa de Predição da estrutura terciária de proteínas Otimização multiobjetivo Monte carlo metropolis Monte carlo com dominância Protein tertiary structure prediction Multi-objective optimization Monte carlo metropolis Monte carlo with dominance CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo |
title_full |
Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo |
title_fullStr |
Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo |
title_full_unstemmed |
Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo |
title_sort |
Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo |
author |
Almeida, Alexandre Barbosa de |
author_facet |
Almeida, Alexandre Barbosa de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Soares, Telma Woerle de Lima |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4717638T6 |
dc.contributor.advisor-co1.fl_str_mv |
Faccioli, Rodrigo Antonio |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4710519J5 |
dc.contributor.referee1.fl_str_mv |
Soares, Telma Woerle de Lima |
dc.contributor.referee2.fl_str_mv |
Facciolo, Rodrigo Antonio |
dc.contributor.referee3.fl_str_mv |
Martins, Wellignton Santos |
dc.contributor.referee4.fl_str_mv |
Leão, Salviano de Araújo |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K8716870A0 |
dc.contributor.author.fl_str_mv |
Almeida, Alexandre Barbosa de |
contributor_str_mv |
Soares, Telma Woerle de Lima Faccioli, Rodrigo Antonio Soares, Telma Woerle de Lima Facciolo, Rodrigo Antonio Martins, Wellignton Santos Leão, Salviano de Araújo |
dc.subject.por.fl_str_mv |
Predição da estrutura terciária de proteínas Otimização multiobjetivo Monte carlo metropolis Monte carlo com dominância |
topic |
Predição da estrutura terciária de proteínas Otimização multiobjetivo Monte carlo metropolis Monte carlo com dominância Protein tertiary structure prediction Multi-objective optimization Monte carlo metropolis Monte carlo with dominance CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Protein tertiary structure prediction Multi-objective optimization Monte carlo metropolis Monte carlo with dominance |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Proteins are vital for the biological functions of all living beings on Earth. However, they only have an active biological function in their native structure, which is a state of minimum energy. Therefore, protein functionality depends almost exclusively on the size and shape of its native conformation. However, less than 1% of all known proteins in the world has its structure solved. In this way, various methods for determining protein structures have been proposed, either in vitro or in silico experiments. This work proposes a new in silico method called Monte Carlo with Dominance, which addresses the problem of protein structure prediction from the point of view of ab initio and multi-objective optimization, considering both protein energetic and structural aspects. The software GROMACS was used for the ab initio treatment to perform Molecular Dynamics simulations, while the framework ProtPred-GROMACS (2PG) was used for the multi-objective optimization problem, employing genetic algorithms techniques as heuristic solutions. Monte Carlo with Dominance, in this sense, is like a variant of the traditional Monte Carlo Metropolis method. The aim is to check if protein tertiary structure prediction is improved when structural aspects are taken into account. The energy criterion of Metropolis and energy and structural criteria of Dominance were compared using RMSD calculation between the predicted and native structures. It was found that Monte Carlo with Dominance obtained better solutions for two of three proteins analyzed, reaching a difference about 53% in relation to the prediction by Metropolis. |
publishDate |
2016 |
dc.date.accessioned.fl_str_mv |
2016-08-09T11:57:53Z |
dc.date.issued.fl_str_mv |
2016-06-17 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ALMEIDA, A. B. Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo. 2016. 129 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2016. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/5872 |
dc.identifier.dark.fl_str_mv |
ark:/38995/00130000073tj |
identifier_str_mv |
ALMEIDA, A. B. Predição de estrutura terciária de proteínas com técnicas multiobjetivo no algoritmo de monte carlo. 2016. 129 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2016. ark:/38995/00130000073tj |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/5872 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-3303550325223384799 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-7712266734633644768 |
dc.relation.cnpq.fl_str_mv |
3671711205811204509 |
dc.relation.sponsorship.fl_str_mv |
-2555911436985713659 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/6b1dfa96-25bf-4f15-967a-260a6931a7d0/download http://repositorio.bc.ufg.br/tede/bitstreams/6ed6015b-9916-49f7-bfcf-1390d5769bdf/download http://repositorio.bc.ufg.br/tede/bitstreams/a8739425-2912-4d07-96b1-90cc490acf37/download http://repositorio.bc.ufg.br/tede/bitstreams/f1300597-26e7-4389-a22d-0d9224971ff8/download http://repositorio.bc.ufg.br/tede/bitstreams/7060a787-ff1e-43b6-a2f7-2481f054bdfa/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 321f3992dd3875151d8801b773ab32ed d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 94f2e941bbde05e098c40f40f0f2f69c |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172585922494464 |