Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais

Detalhes bibliográficos
Autor(a) principal: Peres Filho, Marco Júnio
Data de Publicação: 2014
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/7452
Resumo: The impact of Nanotechnology is constantly raising in different areas of science, with the development of new products that bring benefits in comparison with the alternatives available in the market. When encapsulated in nanoparticles, anticancer drugs can achieve several advantages, most importantly the possibility of reducing the amount of drug administered through targeting strategies, which are not accomplished by conventional medication. Passive targeting is related to leaky vasculature in pathological sites, and active targeting comprehends the attachment of specific ligands, anchored in nanoparticles surface, to recognize and bind receptors overexpressed in cancer cells. Coencapsulation of anticancer drugs in the same pharmaceutical carrier can coordinate pharmacokinetics of encapsulated drugs. In the present work, liposomal formulations targeted to folate receptor with paclitaxel (PTX) and imatinib (IB) coencapsulated were obtained, aiming to combine cytotoxic and antiangiogenic effects of the drugs, respectively. New analytical method was developed and validated for simultaneous quantification of IB and PTX. Soy phosphatidylcholine liposomes were prepared, with cholesterol and DSPEmPEG( 2000), to obtain long circulation particles. DSPE-PEG(2000)-FA was obtained by an unpublished method of synthesis, and this product was further used in the formulation by post-insertion technique. Cytotoxic effect and VEGF gene suppression were studied in vitro in two different cell lines, MCF7 (breast adenocarcnioma) and PC3 (prostatic adenocarcinoma), after treatment with liposomal vesicles. Analytical procedures were developed with isocratic elution, 6,5 minutes runs, with linearity, specificity, precision and accuracy. Quantification limit was 750 Ng/mL and 1000 Ng/mL for IB and PTX, respectively. After extrusion, liposomes had mean diameter close to 100 nm and low polidispersion index. Post-insertion of folic acid attached to lipid anchor procedure increased polidispersion, because the procedure lasted 24h. Drug to lipid ratios were 1:26 and 1:27 (IB and PTX respectively). Lyophilized formulations containing trehalose remained stable after 60 days of storage in terms of %EE. Synthesis of DSPE-PEG(2000)-FA was confirmed by RMN, FT-IR and ESIMS techniques. Liposomal PTX was more cytotoxic (p<0,05) than free drug in MCF7 cell line, after both 24h and 48h of exposion, for all tested concentrations. Targeted formulation containing folic acid ligand, had more impact on cell viability reduction (p<0,05) than non targeted liposomes (LPIP), also after 24h. On PC3 cell line cell viability reduction was greater (p<0,01) when the cells were exposed to targeted vesicles loaded with 1 and 10 Ng/mL of IB and PTX, after 24 and 48h. VEGF gene expression was reduced in MCF7 and PC3 (p<0,05), and once more targeted vesicles showed better results than non-targeted liposomes. It is, thus, plausible to conclude, through in vitro experiments results, that the attachment of folic acid to liposomal formulations, resulting in multi-functional liposomes, is an interesting strategy to achieve enhanced internalization and accumulation of drugs in targeted cells. This was observed by the enhancement of cytotoxic and antiangiogenic effects in breast and prostate cell lines.
id UFG-2_5b40915cf3d438ae5e48d576e7e8965e
oai_identifier_str oai:repositorio.bc.ufg.br:tede/7452
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Lima, Eliana Martinshttp://lattes.cnpq.br/7248774319455970Lima, Eliana Martinshttp://lattes.cnpq.br/7248774319455970Oliveira, Anselmo GomesMagalhães, Nereide Stela SantosBatista, Aline CarvalhoRocha, Matheus lavorentihttp://lattes.cnpq.br/1672585289858682Peres Filho, Marco Júnio2017-06-12T12:31:24Z2014-04-30PERES FILHO, Marco Júnio. Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais. 2014. 108 f. Tese (Doutorado em Nanotecnologia Farmacêutica em Rede) - Universidade Federal de Goiás, Goiânia, 2014.http://repositorio.bc.ufg.br/tede/handle/tede/7452The impact of Nanotechnology is constantly raising in different areas of science, with the development of new products that bring benefits in comparison with the alternatives available in the market. When encapsulated in nanoparticles, anticancer drugs can achieve several advantages, most importantly the possibility of reducing the amount of drug administered through targeting strategies, which are not accomplished by conventional medication. Passive targeting is related to leaky vasculature in pathological sites, and active targeting comprehends the attachment of specific ligands, anchored in nanoparticles surface, to recognize and bind receptors overexpressed in cancer cells. Coencapsulation of anticancer drugs in the same pharmaceutical carrier can coordinate pharmacokinetics of encapsulated drugs. In the present work, liposomal formulations targeted to folate receptor with paclitaxel (PTX) and imatinib (IB) coencapsulated were obtained, aiming to combine cytotoxic and antiangiogenic effects of the drugs, respectively. New analytical method was developed and validated for simultaneous quantification of IB and PTX. Soy phosphatidylcholine liposomes were prepared, with cholesterol and DSPEmPEG( 2000), to obtain long circulation particles. DSPE-PEG(2000)-FA was obtained by an unpublished method of synthesis, and this product was further used in the formulation by post-insertion technique. Cytotoxic effect and VEGF gene suppression were studied in vitro in two different cell lines, MCF7 (breast adenocarcnioma) and PC3 (prostatic adenocarcinoma), after treatment with liposomal vesicles. Analytical procedures were developed with isocratic elution, 6,5 minutes runs, with linearity, specificity, precision and accuracy. Quantification limit was 750 Ng/mL and 1000 Ng/mL for IB and PTX, respectively. After extrusion, liposomes had mean diameter close to 100 nm and low polidispersion index. Post-insertion of folic acid attached to lipid anchor procedure increased polidispersion, because the procedure lasted 24h. Drug to lipid ratios were 1:26 and 1:27 (IB and PTX respectively). Lyophilized formulations containing trehalose remained stable after 60 days of storage in terms of %EE. Synthesis of DSPE-PEG(2000)-FA was confirmed by RMN, FT-IR and ESIMS techniques. Liposomal PTX was more cytotoxic (p<0,05) than free drug in MCF7 cell line, after both 24h and 48h of exposion, for all tested concentrations. Targeted formulation containing folic acid ligand, had more impact on cell viability reduction (p<0,05) than non targeted liposomes (LPIP), also after 24h. On PC3 cell line cell viability reduction was greater (p<0,01) when the cells were exposed to targeted vesicles loaded with 1 and 10 Ng/mL of IB and PTX, after 24 and 48h. VEGF gene expression was reduced in MCF7 and PC3 (p<0,05), and once more targeted vesicles showed better results than non-targeted liposomes. It is, thus, plausible to conclude, through in vitro experiments results, that the attachment of folic acid to liposomal formulations, resulting in multi-functional liposomes, is an interesting strategy to achieve enhanced internalization and accumulation of drugs in targeted cells. This was observed by the enhancement of cytotoxic and antiangiogenic effects in breast and prostate cell lines.A nanotecnologia tem ganhado cada vez mais destaque em várias áreas da ciência, no sentido de desenvolver novos produtos que possam trazer benefícios em comparação com alternativas já existentes no mercado. Uma série de vantagens emergem da nanoencapsulação de fármacos quimioterápicos, principalmente, a possibilidade de diminuição da dose administrada através de estratégias de direcionamento. Dentre elas, podem ser citadas a vetorização passiva, relacionada ao aumento da permeabilidade vascular em regiões tumorais, e a vetorização ativa, que significa o uso de ligantes específicos, cujos receptores são superexpressos em células tumorais, e que ficam ancorados na superfície de nanoestruturas. A coencapsulação de fármacos antitumorais é altamente relevante, uma vez que permite a utilização de diferentes abordagens para eliminação de tumores e a sincronização da farmacocinética dos agentes coencapsulados. No caso deste trabalho, o objetivo foi a associação do efeito citotóxico do paclitaxel (PTX) ao efeito antiangiogênico do imatinibe (IB), encapsulados no mesmo lipossoma direcionado para o receptor folato, superexpresso em vários tumores sólidos. Foi desenvolvido e validado novo método analítico para quantificação simultânea do IB e do PTX. Os lipossomas foram desenvolvidos usando fosfatidilcolina de soja (PC) como lipídio estrutural, colesterol e DSPE-mPEG(2000), este último para conferir efeito de longa circulação. Foi desenvolvido método inédito de síntese da molécula DSPEPEG( 2000)-AF, âncora lipídica ligada ao ácido fólico destinada a biorreconhecimento. Essa molécula foi adicionada à formulação por pós-inserção. Os nanossistemas obtidos foram testados in vitro quanto à citotoxicidade e quanto à inibição da expressão gênica de VEGF em células de adenocarcinoma mamário (MCF7) e de próstata (PC3). O método analítico foi isocrático, com corrida de apenas 6,5 minutos, linear, seletivo, preciso e exato, com limite de quantificação 750 Ng/mL para o IB e 1000 Ng/mL para o PTX. Os lipossomas tiveram diâmetro médio próximo de 100 nm e baixo índice de polidispersão. Apenas após a inserção da âncora ligada ao ácido fólico as amostras ficaram mais polidispersas, devido ao tempo de agitação desse processo (24 h). O IB foi encapsulado na razão molar fármaco:lipídio 1:26 e o PTX na razão 1:27. As formulações liofilizadas, usando o crioprotetor trealose, mantiveram a estabilidade em termos de %EE após 60 dias de armazenamento. O método desenvolvido para síntese do componente DSPEPEG( 2000)-AF foi bem sucedido, o que pôde ser verificado através dos espectros de RMN, FT-IR e IES-EM, que evidenciam a formação de uma nova substância a partir dos reagentes, que tem as características químicas esperadas. O paclitaxel lipossomal foi mais citotóxico (p<0,05) para a linhagem MCF7, tanto em 24h como em 48h, em comparação com o fármaco livre, em todas as concentrações testadas. A formulação vetorizada com a âncora ligada ao ácido fólico, com IB e PTX coencapsulados, foi mais citotóxica (p<0,05) que a não vetorizada (LPIP) nas concentrações testadas, no tempo 24 h. Na linhagem PC3 a redução da viabilidade celular causada pela vetorização ativa, em comparação com o resultado da formulação não vetorizada, foi ainda maior (p<0,01) tanto em 24 como em 48h, nas concentrações 1 e 10 Ng/mL. Houve redução, nas linhagens MCF7 e PC3, da expressão gênica de VEGF, e também nesse caso o tratamento com a formulação vetorizada causou maior efeito em comparação com a não vetorizada (p<0,05). É razoável chegar-se à conclusão, através dos testes in vitro, de que o direcionamento de fármacos nanoencapsulados ao receptor folato, através do emprego de lipossomas multi-funcionais, é uma estratégia interessante no sentido de aumentar a quantidade de fármaco que entra nas células, o que pôde ser observado através do aumento dos efeitos citotóxico e anti-angiogênico em linhagens tumorais de mama e próstata.Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-06-09T20:26:25Z No. of bitstreams: 2 Tese - Marco Júnio Peres Filho - 2014.pdf: 2890867 bytes, checksum: 94c9616394d6a389aadabf3d9a0b128c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-06-12T12:31:24Z (GMT) No. of bitstreams: 2 Tese - Marco Júnio Peres Filho - 2014.pdf: 2890867 bytes, checksum: 94c9616394d6a389aadabf3d9a0b128c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-06-12T12:31:24Z (GMT). No. of bitstreams: 2 Tese - Marco Júnio Peres Filho - 2014.pdf: 2890867 bytes, checksum: 94c9616394d6a389aadabf3d9a0b128c (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2014-04-30application/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Nanotecnologia Farmacêutica em Rede (FF)UFGBrasilFaculdade Farmácia - FF (RG)Embargada pelo autor/orientador em 10/02/2015. Autorizado o povoamento pelo autor/orientador em 30/05/2017.-894545195985692531560060060060102811615242093756997636413449754996http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessLipossomas vetorizadosÁcido fólicoCoencapsulaçãoNanotecnologia aplicada ao câncerViabilidade celularTargeted liposomesFolic acidCoencapsulationCancer nanotechnologyCytotoxicityCIENCIAS DA SAUDE::FARMACIADesenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumoraisDevelopment of folate receptor vector liposomes containing coencapsulated paclitaxel and imatinib: evaluation of antiproliferative activity and gene expression of VEGF in tumor cellsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/ec7060e4-b56a-4aa4-9405-9e3f3decb1d3/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/b95791fc-e8c3-440f-8c1c-a1c942e544aa/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/dfd73520-9b37-4851-9d10-9bc0ee3c1ace/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/969d4843-1df5-486b-8664-ad1cbe44aac1/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Marco Júnio Peres Filho - 2014.pdfTese - Marco Júnio Peres Filho - 2014.pdfapplication/pdf2890867http://repositorio.bc.ufg.br/tede/bitstreams/6a4d344b-c7e5-4a69-9d34-49d4f3199087/download94c9616394d6a389aadabf3d9a0b128cMD55tede/74522023-04-28 08:08:02.56http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/7452http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2023-04-28T11:08:02Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais
dc.title.alternative.eng.fl_str_mv Development of folate receptor vector liposomes containing coencapsulated paclitaxel and imatinib: evaluation of antiproliferative activity and gene expression of VEGF in tumor cells
title Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais
spellingShingle Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais
Peres Filho, Marco Júnio
Lipossomas vetorizados
Ácido fólico
Coencapsulação
Nanotecnologia aplicada ao câncer
Viabilidade celular
Targeted liposomes
Folic acid
Coencapsulation
Cancer nanotechnology
Cytotoxicity
CIENCIAS DA SAUDE::FARMACIA
title_short Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais
title_full Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais
title_fullStr Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais
title_full_unstemmed Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais
title_sort Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais
author Peres Filho, Marco Júnio
author_facet Peres Filho, Marco Júnio
author_role author
dc.contributor.advisor1.fl_str_mv Lima, Eliana Martins
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7248774319455970
dc.contributor.referee1.fl_str_mv Lima, Eliana Martins
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/7248774319455970
dc.contributor.referee2.fl_str_mv Oliveira, Anselmo Gomes
dc.contributor.referee3.fl_str_mv Magalhães, Nereide Stela Santos
dc.contributor.referee4.fl_str_mv Batista, Aline Carvalho
dc.contributor.referee5.fl_str_mv Rocha, Matheus lavorenti
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1672585289858682
dc.contributor.author.fl_str_mv Peres Filho, Marco Júnio
contributor_str_mv Lima, Eliana Martins
Lima, Eliana Martins
Oliveira, Anselmo Gomes
Magalhães, Nereide Stela Santos
Batista, Aline Carvalho
Rocha, Matheus lavorenti
dc.subject.por.fl_str_mv Lipossomas vetorizados
Ácido fólico
Coencapsulação
Nanotecnologia aplicada ao câncer
Viabilidade celular
topic Lipossomas vetorizados
Ácido fólico
Coencapsulação
Nanotecnologia aplicada ao câncer
Viabilidade celular
Targeted liposomes
Folic acid
Coencapsulation
Cancer nanotechnology
Cytotoxicity
CIENCIAS DA SAUDE::FARMACIA
dc.subject.eng.fl_str_mv Targeted liposomes
Folic acid
Coencapsulation
Cancer nanotechnology
Cytotoxicity
dc.subject.cnpq.fl_str_mv CIENCIAS DA SAUDE::FARMACIA
description The impact of Nanotechnology is constantly raising in different areas of science, with the development of new products that bring benefits in comparison with the alternatives available in the market. When encapsulated in nanoparticles, anticancer drugs can achieve several advantages, most importantly the possibility of reducing the amount of drug administered through targeting strategies, which are not accomplished by conventional medication. Passive targeting is related to leaky vasculature in pathological sites, and active targeting comprehends the attachment of specific ligands, anchored in nanoparticles surface, to recognize and bind receptors overexpressed in cancer cells. Coencapsulation of anticancer drugs in the same pharmaceutical carrier can coordinate pharmacokinetics of encapsulated drugs. In the present work, liposomal formulations targeted to folate receptor with paclitaxel (PTX) and imatinib (IB) coencapsulated were obtained, aiming to combine cytotoxic and antiangiogenic effects of the drugs, respectively. New analytical method was developed and validated for simultaneous quantification of IB and PTX. Soy phosphatidylcholine liposomes were prepared, with cholesterol and DSPEmPEG( 2000), to obtain long circulation particles. DSPE-PEG(2000)-FA was obtained by an unpublished method of synthesis, and this product was further used in the formulation by post-insertion technique. Cytotoxic effect and VEGF gene suppression were studied in vitro in two different cell lines, MCF7 (breast adenocarcnioma) and PC3 (prostatic adenocarcinoma), after treatment with liposomal vesicles. Analytical procedures were developed with isocratic elution, 6,5 minutes runs, with linearity, specificity, precision and accuracy. Quantification limit was 750 Ng/mL and 1000 Ng/mL for IB and PTX, respectively. After extrusion, liposomes had mean diameter close to 100 nm and low polidispersion index. Post-insertion of folic acid attached to lipid anchor procedure increased polidispersion, because the procedure lasted 24h. Drug to lipid ratios were 1:26 and 1:27 (IB and PTX respectively). Lyophilized formulations containing trehalose remained stable after 60 days of storage in terms of %EE. Synthesis of DSPE-PEG(2000)-FA was confirmed by RMN, FT-IR and ESIMS techniques. Liposomal PTX was more cytotoxic (p<0,05) than free drug in MCF7 cell line, after both 24h and 48h of exposion, for all tested concentrations. Targeted formulation containing folic acid ligand, had more impact on cell viability reduction (p<0,05) than non targeted liposomes (LPIP), also after 24h. On PC3 cell line cell viability reduction was greater (p<0,01) when the cells were exposed to targeted vesicles loaded with 1 and 10 Ng/mL of IB and PTX, after 24 and 48h. VEGF gene expression was reduced in MCF7 and PC3 (p<0,05), and once more targeted vesicles showed better results than non-targeted liposomes. It is, thus, plausible to conclude, through in vitro experiments results, that the attachment of folic acid to liposomal formulations, resulting in multi-functional liposomes, is an interesting strategy to achieve enhanced internalization and accumulation of drugs in targeted cells. This was observed by the enhancement of cytotoxic and antiangiogenic effects in breast and prostate cell lines.
publishDate 2014
dc.date.issued.fl_str_mv 2014-04-30
dc.date.accessioned.fl_str_mv 2017-06-12T12:31:24Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PERES FILHO, Marco Júnio. Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais. 2014. 108 f. Tese (Doutorado em Nanotecnologia Farmacêutica em Rede) - Universidade Federal de Goiás, Goiânia, 2014.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/7452
identifier_str_mv PERES FILHO, Marco Júnio. Desenvolvimento de lipossomas vetorizados ao receptor folato contendo paclitaxel e imatinibe coencapsulados: avaliação da atividade antiproliferativa e da expressão gênica do VEGF em células tumorais. 2014. 108 f. Tese (Doutorado em Nanotecnologia Farmacêutica em Rede) - Universidade Federal de Goiás, Goiânia, 2014.
url http://repositorio.bc.ufg.br/tede/handle/tede/7452
dc.language.iso.fl_str_mv por
language por
dc.relation.eng.fl_str_mv Embargada pelo autor/orientador em 10/02/2015. Autorizado o povoamento pelo autor/orientador em 30/05/2017.
dc.relation.program.fl_str_mv -8945451959856925315
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 6010281161524209375
dc.relation.cnpq.fl_str_mv 6997636413449754996
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Nanotecnologia Farmacêutica em Rede (FF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Faculdade Farmácia - FF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/ec7060e4-b56a-4aa4-9405-9e3f3decb1d3/download
http://repositorio.bc.ufg.br/tede/bitstreams/b95791fc-e8c3-440f-8c1c-a1c942e544aa/download
http://repositorio.bc.ufg.br/tede/bitstreams/dfd73520-9b37-4851-9d10-9bc0ee3c1ace/download
http://repositorio.bc.ufg.br/tede/bitstreams/969d4843-1df5-486b-8664-ad1cbe44aac1/download
http://repositorio.bc.ufg.br/tede/bitstreams/6a4d344b-c7e5-4a69-9d34-49d4f3199087/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
94c9616394d6a389aadabf3d9a0b128c
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1798044336975249408