Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear

Detalhes bibliográficos
Autor(a) principal: Ribeiro, Diogo de Freitas
Data de Publicação: 2023
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/00130000067zt
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/13123
Resumo: Learning to Rank (L2R) is a sub-area of Information Retrieval that aims to use machine learning to optimize the positioning of the most relevant documents in the answer ranking to a specific query. Until recently, the LambdaMART method, which corresponds to an ensemble of regression trees, was considered state-of-the-art in L2R. However, the introduction of AllRank, a deep learning method that incorporates self-attention mechanisms, has overtaken LambdaMART as the most effective approach for L2R tasks. This study, at issued, explored the effectiveness and efficiency of sub-networks ensemble as a complementary method to an already excellent idea, which is the self-attention used in AllRank, thus establishing a new level of innovation and effectiveness in the field of ranking. Different methods for forming sub-networks ensemble, such as MultiSample Dropout, Multi-Sample Dropout (Training and Testing), BatchEnsemble and Masksembles, were implemented and tested on two standard data collections: MSLRWEB10K and YAHOO!. The results of the experiments indicated that some of these ensemble approaches, specifically Masksembles and BatchEnsemble, outperformed the original AllRank in metrics such as NDCG@1, NDCG@5 and NDCG@10, although they were more costly in terms of training and testing time. In conclusion, the research reveals that the application of sub-networks ensemble in L2R models is a promising strategy, especially in scenarios where latency time is not critical. Thus, this work not only advances the state of the art in L2R, but also opens up new possibilities for improvements in effectiveness and efficiency, inspiring future research into the use of sub-networks ensemble in L2R.
id UFG-2_5bafd877ba22997a32f2bec174892c09
oai_identifier_str oai:repositorio.bc.ufg.br:tede/13123
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Rosa, Thierson Coutohttp://lattes.cnpq.br/4414718560764818Sousa, Daniel Xavier dehttp://lattes.cnpq.br/4603724338719739Rosa, Thierson CoutoSousa, Daniel Xavier deCanuto, Sérgio Daniel CarvalhoMartins, Wellington Santoshttp://lattes.cnpq.br/4691023333320649Ribeiro, Diogo de Freitas2023-11-06T14:34:12Z2023-11-06T14:34:12Z2023-09-01RIBEIRO, D. F. Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2023.http://repositorio.bc.ufg.br/tede/handle/tede/13123ark:/38995/00130000067ztLearning to Rank (L2R) is a sub-area of Information Retrieval that aims to use machine learning to optimize the positioning of the most relevant documents in the answer ranking to a specific query. Until recently, the LambdaMART method, which corresponds to an ensemble of regression trees, was considered state-of-the-art in L2R. However, the introduction of AllRank, a deep learning method that incorporates self-attention mechanisms, has overtaken LambdaMART as the most effective approach for L2R tasks. This study, at issued, explored the effectiveness and efficiency of sub-networks ensemble as a complementary method to an already excellent idea, which is the self-attention used in AllRank, thus establishing a new level of innovation and effectiveness in the field of ranking. Different methods for forming sub-networks ensemble, such as MultiSample Dropout, Multi-Sample Dropout (Training and Testing), BatchEnsemble and Masksembles, were implemented and tested on two standard data collections: MSLRWEB10K and YAHOO!. The results of the experiments indicated that some of these ensemble approaches, specifically Masksembles and BatchEnsemble, outperformed the original AllRank in metrics such as NDCG@1, NDCG@5 and NDCG@10, although they were more costly in terms of training and testing time. In conclusion, the research reveals that the application of sub-networks ensemble in L2R models is a promising strategy, especially in scenarios where latency time is not critical. Thus, this work not only advances the state of the art in L2R, but also opens up new possibilities for improvements in effectiveness and efficiency, inspiring future research into the use of sub-networks ensemble in L2R.Aprender a Ranquear (AR) é uma sub-área em Recuperação de Informação que tem como objetivo usar aprendizado automático para otimizar o posicionamento dos documentos mais relevantes no ranque de resposta a uma consulta específica. Até recentemente, o método LambdaMART, que corresponde a um comitê de árvores de regressão, era considerado o estado-da-arte em AR. Contudo, a introdução do AllRank, um método de aprendizado profundo que incorpora mecanismos de self-attention, superou o LambdaMART como uma abordagem mais efetiva para tarefas de AR. Este estudo, em questão, explorou a efetividade e a eficiência dos comitês de sub-redes neurais como um método complementar a uma ideia que já era de excelência, que é o self-attention utilizado no AllRank, estabelecendo assim um novo patamar de inovação e efetividade no domínio do ranqueamento. Diferentes métodos de formação de comitês de sub-redes, como Multi-Sample Dropout, Multi-Sample Dropout (Treino e teste), BatchEnsemble e Masksembles, foram implementados e testados em duas coleções de dados padrão: MSLR-WEB10K e YAHOO!. Os resultados dos experimentos indicaram que algumas dessas abordagens de comitês, especificamente Masksembles e BatchEnsemble, superaram o AllRank original em métricas como NDCG@1, NDCG@5 e NDCG@10, embora fossem mais custosas em termos de tempo de treinamento e teste. Em conclusão, a pesquisa revela que a aplicação de comitês de sub-redes neurais em modelos de AR é uma estratégia promissora, especialmente em cenários onde o tempo de latência não é crítico. Desse modo, esse trabalho não apenas avança o estado da arte em AR, mas também abre novas possibilidades para melhorias de efetividade e eficiência, inspirando pesquisas futuras no uso de comitês de sub-redes neurais em AR.Submitted by Dayane Basílio (dayanebasilio@ufg.br) on 2023-11-03T15:25:18Z workflow start=Step: editstep - action:claimaction No. of bitstreams: 2 Dissertacao - Diogo de Freitas Ribeiro - 2023.pdf: 1480424 bytes, checksum: 5c71fb90db36467552148ade2877db2c (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Step: editstep - action:editaction Rejected by Luciana Ferreira(lucgeral@gmail.com), reason: Selecionou a coleção errada, é mestrado e não doutorado on 2023-11-06T11:02:10Z (GMT)Submitted by Dayane Basílio (dayanebasilio@ufg.br) on 2023-11-06T12:09:30Z workflow start=Step: editstep - action:claimaction No. of bitstreams: 2 Dissertacao - Diogo de Freitas Ribeiro - 2023.pdf: 1480424 bytes, checksum: 5c71fb90db36467552148ade2877db2c (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Step: editstep - action:editaction Approved for entry into archive by Luciana Ferreira(lucgeral@gmail.com) on 2023-11-06T14:34:12Z (GMT)Made available in DSpace on 2023-11-06T14:34:12Z (GMT). No. of bitstreams: 2 Dissertação - Diogo de Freitas Ribeiro - 2023.pdf: 1480424 bytes, checksum: 5c71fb90db36467552148ade2877db2c (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2023-09-01Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RMG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessRecuperação de informaçãoAprender a ranquearAprendizado por comitêComitê de sub-redes neuraisInformation retrievalLearning to rankEnsemble learningSub-networks ensembleCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOEstudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquearA comparative study of neural subnetwork ensembles for the problem of learning to rankinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertação - Diogo de Freitas Ribeiro - 2023.pdfDissertação - Diogo de Freitas Ribeiro - 2023.pdfapplication/pdf1480424http://repositorio.bc.ufg.br/tede/bitstreams/dfba6cb0-c438-4bb6-a219-277bd248f81d/download5c71fb90db36467552148ade2877db2cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/f67d327e-6410-4a99-b8b7-7835ac75e64c/download8a4605be74aa9ea9d79846c1fba20a33MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/e463cde3-db36-48f4-a946-4aaebc91f76a/download4460e5956bc1d1639be9ae6146a50347MD53tede/131232023-11-06 11:34:12.971http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/13123http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2023-11-06T14:34:12Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.none.fl_str_mv Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear
dc.title.alternative.eng.fl_str_mv A comparative study of neural subnetwork ensembles for the problem of learning to rank
title Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear
spellingShingle Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear
Ribeiro, Diogo de Freitas
Recuperação de informação
Aprender a ranquear
Aprendizado por comitê
Comitê de sub-redes neurais
Information retrieval
Learning to rank
Ensemble learning
Sub-networks ensemble
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
title_short Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear
title_full Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear
title_fullStr Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear
title_full_unstemmed Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear
title_sort Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear
author Ribeiro, Diogo de Freitas
author_facet Ribeiro, Diogo de Freitas
author_role author
dc.contributor.advisor1.fl_str_mv Rosa, Thierson Couto
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4414718560764818
dc.contributor.advisor-co1.fl_str_mv Sousa, Daniel Xavier de
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/4603724338719739
dc.contributor.referee1.fl_str_mv Rosa, Thierson Couto
dc.contributor.referee2.fl_str_mv Sousa, Daniel Xavier de
dc.contributor.referee3.fl_str_mv Canuto, Sérgio Daniel Carvalho
dc.contributor.referee4.fl_str_mv Martins, Wellington Santos
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4691023333320649
dc.contributor.author.fl_str_mv Ribeiro, Diogo de Freitas
contributor_str_mv Rosa, Thierson Couto
Sousa, Daniel Xavier de
Rosa, Thierson Couto
Sousa, Daniel Xavier de
Canuto, Sérgio Daniel Carvalho
Martins, Wellington Santos
dc.subject.por.fl_str_mv Recuperação de informação
Aprender a ranquear
Aprendizado por comitê
Comitê de sub-redes neurais
topic Recuperação de informação
Aprender a ranquear
Aprendizado por comitê
Comitê de sub-redes neurais
Information retrieval
Learning to rank
Ensemble learning
Sub-networks ensemble
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Information retrieval
Learning to rank
Ensemble learning
Sub-networks ensemble
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO
description Learning to Rank (L2R) is a sub-area of Information Retrieval that aims to use machine learning to optimize the positioning of the most relevant documents in the answer ranking to a specific query. Until recently, the LambdaMART method, which corresponds to an ensemble of regression trees, was considered state-of-the-art in L2R. However, the introduction of AllRank, a deep learning method that incorporates self-attention mechanisms, has overtaken LambdaMART as the most effective approach for L2R tasks. This study, at issued, explored the effectiveness and efficiency of sub-networks ensemble as a complementary method to an already excellent idea, which is the self-attention used in AllRank, thus establishing a new level of innovation and effectiveness in the field of ranking. Different methods for forming sub-networks ensemble, such as MultiSample Dropout, Multi-Sample Dropout (Training and Testing), BatchEnsemble and Masksembles, were implemented and tested on two standard data collections: MSLRWEB10K and YAHOO!. The results of the experiments indicated that some of these ensemble approaches, specifically Masksembles and BatchEnsemble, outperformed the original AllRank in metrics such as NDCG@1, NDCG@5 and NDCG@10, although they were more costly in terms of training and testing time. In conclusion, the research reveals that the application of sub-networks ensemble in L2R models is a promising strategy, especially in scenarios where latency time is not critical. Thus, this work not only advances the state of the art in L2R, but also opens up new possibilities for improvements in effectiveness and efficiency, inspiring future research into the use of sub-networks ensemble in L2R.
publishDate 2023
dc.date.accessioned.fl_str_mv 2023-11-06T14:34:12Z
dc.date.available.fl_str_mv 2023-11-06T14:34:12Z
dc.date.issued.fl_str_mv 2023-09-01
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RIBEIRO, D. F. Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2023.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/13123
dc.identifier.dark.fl_str_mv ark:/38995/00130000067zt
identifier_str_mv RIBEIRO, D. F. Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2023.
ark:/38995/00130000067zt
url http://repositorio.bc.ufg.br/tede/handle/tede/13123
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RMG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/dfba6cb0-c438-4bb6-a219-277bd248f81d/download
http://repositorio.bc.ufg.br/tede/bitstreams/f67d327e-6410-4a99-b8b7-7835ac75e64c/download
http://repositorio.bc.ufg.br/tede/bitstreams/e463cde3-db36-48f4-a946-4aaebc91f76a/download
bitstream.checksum.fl_str_mv 5c71fb90db36467552148ade2877db2c
8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172576283983872