Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/00130000067zt |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/13123 |
Resumo: | Learning to Rank (L2R) is a sub-area of Information Retrieval that aims to use machine learning to optimize the positioning of the most relevant documents in the answer ranking to a specific query. Until recently, the LambdaMART method, which corresponds to an ensemble of regression trees, was considered state-of-the-art in L2R. However, the introduction of AllRank, a deep learning method that incorporates self-attention mechanisms, has overtaken LambdaMART as the most effective approach for L2R tasks. This study, at issued, explored the effectiveness and efficiency of sub-networks ensemble as a complementary method to an already excellent idea, which is the self-attention used in AllRank, thus establishing a new level of innovation and effectiveness in the field of ranking. Different methods for forming sub-networks ensemble, such as MultiSample Dropout, Multi-Sample Dropout (Training and Testing), BatchEnsemble and Masksembles, were implemented and tested on two standard data collections: MSLRWEB10K and YAHOO!. The results of the experiments indicated that some of these ensemble approaches, specifically Masksembles and BatchEnsemble, outperformed the original AllRank in metrics such as NDCG@1, NDCG@5 and NDCG@10, although they were more costly in terms of training and testing time. In conclusion, the research reveals that the application of sub-networks ensemble in L2R models is a promising strategy, especially in scenarios where latency time is not critical. Thus, this work not only advances the state of the art in L2R, but also opens up new possibilities for improvements in effectiveness and efficiency, inspiring future research into the use of sub-networks ensemble in L2R. |
id |
UFG-2_5bafd877ba22997a32f2bec174892c09 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/13123 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Rosa, Thierson Coutohttp://lattes.cnpq.br/4414718560764818Sousa, Daniel Xavier dehttp://lattes.cnpq.br/4603724338719739Rosa, Thierson CoutoSousa, Daniel Xavier deCanuto, Sérgio Daniel CarvalhoMartins, Wellington Santoshttp://lattes.cnpq.br/4691023333320649Ribeiro, Diogo de Freitas2023-11-06T14:34:12Z2023-11-06T14:34:12Z2023-09-01RIBEIRO, D. F. Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2023.http://repositorio.bc.ufg.br/tede/handle/tede/13123ark:/38995/00130000067ztLearning to Rank (L2R) is a sub-area of Information Retrieval that aims to use machine learning to optimize the positioning of the most relevant documents in the answer ranking to a specific query. Until recently, the LambdaMART method, which corresponds to an ensemble of regression trees, was considered state-of-the-art in L2R. However, the introduction of AllRank, a deep learning method that incorporates self-attention mechanisms, has overtaken LambdaMART as the most effective approach for L2R tasks. This study, at issued, explored the effectiveness and efficiency of sub-networks ensemble as a complementary method to an already excellent idea, which is the self-attention used in AllRank, thus establishing a new level of innovation and effectiveness in the field of ranking. Different methods for forming sub-networks ensemble, such as MultiSample Dropout, Multi-Sample Dropout (Training and Testing), BatchEnsemble and Masksembles, were implemented and tested on two standard data collections: MSLRWEB10K and YAHOO!. The results of the experiments indicated that some of these ensemble approaches, specifically Masksembles and BatchEnsemble, outperformed the original AllRank in metrics such as NDCG@1, NDCG@5 and NDCG@10, although they were more costly in terms of training and testing time. In conclusion, the research reveals that the application of sub-networks ensemble in L2R models is a promising strategy, especially in scenarios where latency time is not critical. Thus, this work not only advances the state of the art in L2R, but also opens up new possibilities for improvements in effectiveness and efficiency, inspiring future research into the use of sub-networks ensemble in L2R.Aprender a Ranquear (AR) é uma sub-área em Recuperação de Informação que tem como objetivo usar aprendizado automático para otimizar o posicionamento dos documentos mais relevantes no ranque de resposta a uma consulta específica. Até recentemente, o método LambdaMART, que corresponde a um comitê de árvores de regressão, era considerado o estado-da-arte em AR. Contudo, a introdução do AllRank, um método de aprendizado profundo que incorpora mecanismos de self-attention, superou o LambdaMART como uma abordagem mais efetiva para tarefas de AR. Este estudo, em questão, explorou a efetividade e a eficiência dos comitês de sub-redes neurais como um método complementar a uma ideia que já era de excelência, que é o self-attention utilizado no AllRank, estabelecendo assim um novo patamar de inovação e efetividade no domínio do ranqueamento. Diferentes métodos de formação de comitês de sub-redes, como Multi-Sample Dropout, Multi-Sample Dropout (Treino e teste), BatchEnsemble e Masksembles, foram implementados e testados em duas coleções de dados padrão: MSLR-WEB10K e YAHOO!. Os resultados dos experimentos indicaram que algumas dessas abordagens de comitês, especificamente Masksembles e BatchEnsemble, superaram o AllRank original em métricas como NDCG@1, NDCG@5 e NDCG@10, embora fossem mais custosas em termos de tempo de treinamento e teste. Em conclusão, a pesquisa revela que a aplicação de comitês de sub-redes neurais em modelos de AR é uma estratégia promissora, especialmente em cenários onde o tempo de latência não é crítico. Desse modo, esse trabalho não apenas avança o estado da arte em AR, mas também abre novas possibilidades para melhorias de efetividade e eficiência, inspirando pesquisas futuras no uso de comitês de sub-redes neurais em AR.Submitted by Dayane Basílio (dayanebasilio@ufg.br) on 2023-11-03T15:25:18Z workflow start=Step: editstep - action:claimaction No. of bitstreams: 2 Dissertacao - Diogo de Freitas Ribeiro - 2023.pdf: 1480424 bytes, checksum: 5c71fb90db36467552148ade2877db2c (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Step: editstep - action:editaction Rejected by Luciana Ferreira(lucgeral@gmail.com), reason: Selecionou a coleção errada, é mestrado e não doutorado on 2023-11-06T11:02:10Z (GMT)Submitted by Dayane Basílio (dayanebasilio@ufg.br) on 2023-11-06T12:09:30Z workflow start=Step: editstep - action:claimaction No. of bitstreams: 2 Dissertacao - Diogo de Freitas Ribeiro - 2023.pdf: 1480424 bytes, checksum: 5c71fb90db36467552148ade2877db2c (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Step: editstep - action:editaction Approved for entry into archive by Luciana Ferreira(lucgeral@gmail.com) on 2023-11-06T14:34:12Z (GMT)Made available in DSpace on 2023-11-06T14:34:12Z (GMT). No. of bitstreams: 2 Dissertação - Diogo de Freitas Ribeiro - 2023.pdf: 1480424 bytes, checksum: 5c71fb90db36467552148ade2877db2c (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2023-09-01Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RMG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessRecuperação de informaçãoAprender a ranquearAprendizado por comitêComitê de sub-redes neuraisInformation retrievalLearning to rankEnsemble learningSub-networks ensembleCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOEstudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquearA comparative study of neural subnetwork ensembles for the problem of learning to rankinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertação - Diogo de Freitas Ribeiro - 2023.pdfDissertação - Diogo de Freitas Ribeiro - 2023.pdfapplication/pdf1480424http://repositorio.bc.ufg.br/tede/bitstreams/dfba6cb0-c438-4bb6-a219-277bd248f81d/download5c71fb90db36467552148ade2877db2cMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/f67d327e-6410-4a99-b8b7-7835ac75e64c/download8a4605be74aa9ea9d79846c1fba20a33MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/e463cde3-db36-48f4-a946-4aaebc91f76a/download4460e5956bc1d1639be9ae6146a50347MD53tede/131232023-11-06 11:34:12.971http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/13123http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2023-11-06T14:34:12Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.none.fl_str_mv |
Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear |
dc.title.alternative.eng.fl_str_mv |
A comparative study of neural subnetwork ensembles for the problem of learning to rank |
title |
Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear |
spellingShingle |
Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear Ribeiro, Diogo de Freitas Recuperação de informação Aprender a ranquear Aprendizado por comitê Comitê de sub-redes neurais Information retrieval Learning to rank Ensemble learning Sub-networks ensemble CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
title_short |
Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear |
title_full |
Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear |
title_fullStr |
Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear |
title_full_unstemmed |
Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear |
title_sort |
Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear |
author |
Ribeiro, Diogo de Freitas |
author_facet |
Ribeiro, Diogo de Freitas |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Rosa, Thierson Couto |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4414718560764818 |
dc.contributor.advisor-co1.fl_str_mv |
Sousa, Daniel Xavier de |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/4603724338719739 |
dc.contributor.referee1.fl_str_mv |
Rosa, Thierson Couto |
dc.contributor.referee2.fl_str_mv |
Sousa, Daniel Xavier de |
dc.contributor.referee3.fl_str_mv |
Canuto, Sérgio Daniel Carvalho |
dc.contributor.referee4.fl_str_mv |
Martins, Wellington Santos |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4691023333320649 |
dc.contributor.author.fl_str_mv |
Ribeiro, Diogo de Freitas |
contributor_str_mv |
Rosa, Thierson Couto Sousa, Daniel Xavier de Rosa, Thierson Couto Sousa, Daniel Xavier de Canuto, Sérgio Daniel Carvalho Martins, Wellington Santos |
dc.subject.por.fl_str_mv |
Recuperação de informação Aprender a ranquear Aprendizado por comitê Comitê de sub-redes neurais |
topic |
Recuperação de informação Aprender a ranquear Aprendizado por comitê Comitê de sub-redes neurais Information retrieval Learning to rank Ensemble learning Sub-networks ensemble CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Information retrieval Learning to rank Ensemble learning Sub-networks ensemble |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
description |
Learning to Rank (L2R) is a sub-area of Information Retrieval that aims to use machine learning to optimize the positioning of the most relevant documents in the answer ranking to a specific query. Until recently, the LambdaMART method, which corresponds to an ensemble of regression trees, was considered state-of-the-art in L2R. However, the introduction of AllRank, a deep learning method that incorporates self-attention mechanisms, has overtaken LambdaMART as the most effective approach for L2R tasks. This study, at issued, explored the effectiveness and efficiency of sub-networks ensemble as a complementary method to an already excellent idea, which is the self-attention used in AllRank, thus establishing a new level of innovation and effectiveness in the field of ranking. Different methods for forming sub-networks ensemble, such as MultiSample Dropout, Multi-Sample Dropout (Training and Testing), BatchEnsemble and Masksembles, were implemented and tested on two standard data collections: MSLRWEB10K and YAHOO!. The results of the experiments indicated that some of these ensemble approaches, specifically Masksembles and BatchEnsemble, outperformed the original AllRank in metrics such as NDCG@1, NDCG@5 and NDCG@10, although they were more costly in terms of training and testing time. In conclusion, the research reveals that the application of sub-networks ensemble in L2R models is a promising strategy, especially in scenarios where latency time is not critical. Thus, this work not only advances the state of the art in L2R, but also opens up new possibilities for improvements in effectiveness and efficiency, inspiring future research into the use of sub-networks ensemble in L2R. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-11-06T14:34:12Z |
dc.date.available.fl_str_mv |
2023-11-06T14:34:12Z |
dc.date.issued.fl_str_mv |
2023-09-01 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RIBEIRO, D. F. Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2023. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/13123 |
dc.identifier.dark.fl_str_mv |
ark:/38995/00130000067zt |
identifier_str_mv |
RIBEIRO, D. F. Estudo comparativo de comitês de sub-redes neurais para o problema de aprender a ranquear. 2023. 80 f. Dissertação (Mestrado em Ciência da Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2023. ark:/38995/00130000067zt |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/13123 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RMG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/dfba6cb0-c438-4bb6-a219-277bd248f81d/download http://repositorio.bc.ufg.br/tede/bitstreams/f67d327e-6410-4a99-b8b7-7835ac75e64c/download http://repositorio.bc.ufg.br/tede/bitstreams/e463cde3-db36-48f4-a946-4aaebc91f76a/download |
bitstream.checksum.fl_str_mv |
5c71fb90db36467552148ade2877db2c 8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172576283983872 |