Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000001tfq |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/12875 |
Resumo: | Staygreen and grain yield are agronomic traits of interest to be evaluated in modern maize breeding programs. A modern approach to improving these traits can be genomic selection, whose efficiency depends, among other factors, on the proper choice of the prediction model to be used, the effects that will be accounted for in this model and the resources and time required for the prediction process of the phenotypes. In this work, three parametric models and a non-parametric model were used in the multi-environment genomic prediction of single maize hybrids for staygreen and grain yield, considering additive effects, exclusively, and together with dominance effects. The phenotypic data refer to the evaluation of 152 single maize hybrids, from the crossing of 42 inbred lines, evaluated in 13 environments for grain yield and 8 environments for staygreen. The lines were genotyped with 13,826 SNPs (Single Nucleotide Polymorphism) markers using the GBS (Genotyping by Sequencing) method, and their genotypic combinations were used to generate the genotypes of the hybrids. Adjusted means for each genotype at each location were used to train the genomic prediction models. The predictive ability was measured using Pearson's mean correlation, obtained using the ten-fold system. The models' predictive abilities ranged from 0.23 to 0.83 for grain yield and 0.44 to 0.72 for staygreen. The inclusion of dominance effects in all parametric models increased the predictive abilities for both traits, and for grain yield the average increase was 25%. This confirms that the inclusion of non-additive effects in the prediction model allows better exploration of heterosis and greater precision in genomic selection. The models did not differ between attributes linked to predictive ability. Due to the lower computational demand of GBLUP, it is the most suitable to predict the phenotypic performance of these characters in this data set. Prediction with the additive-dominant GBLUP model indicates the possibility of selecting better combinations of inbred lines than those already performed, which potentially increase grain and staygreen productivity by selecting the best 15 hybrids per prediction for each character separately. |
id |
UFG-2_5bc21863c649532f788a96a5067fb0fb |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/12875 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Resende, Marcela Pedroso Mendeshttp://lattes.cnpq.br/2080097211870591Coelho, Alexandre Siqueira Guedeshttp://lattes.cnpq.br/0840926305216925Resende, Marcela Pedroso MendesMôro, Gustavo VittiSouza Júnior, Cláudio Lopes deCosta Neto, Germano Martins FerreiraToledo, Fernando Henrique Ribeiro Barrozohttp://lattes.cnpq.br/9735629084160640Crispim Filho, Ailton José2023-06-01T10:56:52Z2023-06-01T10:56:52Z2023-04-28CRISPIM FILHO, A. J. Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen. 2023. 75 f. Tese (Doutorado em Genética e Melhoramento de Plantas) - Universidade Federal de Goiás, Goiânia, 2023.http://repositorio.bc.ufg.br/tede/handle/tede/12875ark:/38995/0013000001tfqStaygreen and grain yield are agronomic traits of interest to be evaluated in modern maize breeding programs. A modern approach to improving these traits can be genomic selection, whose efficiency depends, among other factors, on the proper choice of the prediction model to be used, the effects that will be accounted for in this model and the resources and time required for the prediction process of the phenotypes. In this work, three parametric models and a non-parametric model were used in the multi-environment genomic prediction of single maize hybrids for staygreen and grain yield, considering additive effects, exclusively, and together with dominance effects. The phenotypic data refer to the evaluation of 152 single maize hybrids, from the crossing of 42 inbred lines, evaluated in 13 environments for grain yield and 8 environments for staygreen. The lines were genotyped with 13,826 SNPs (Single Nucleotide Polymorphism) markers using the GBS (Genotyping by Sequencing) method, and their genotypic combinations were used to generate the genotypes of the hybrids. Adjusted means for each genotype at each location were used to train the genomic prediction models. The predictive ability was measured using Pearson's mean correlation, obtained using the ten-fold system. The models' predictive abilities ranged from 0.23 to 0.83 for grain yield and 0.44 to 0.72 for staygreen. The inclusion of dominance effects in all parametric models increased the predictive abilities for both traits, and for grain yield the average increase was 25%. This confirms that the inclusion of non-additive effects in the prediction model allows better exploration of heterosis and greater precision in genomic selection. The models did not differ between attributes linked to predictive ability. Due to the lower computational demand of GBLUP, it is the most suitable to predict the phenotypic performance of these characters in this data set. Prediction with the additive-dominant GBLUP model indicates the possibility of selecting better combinations of inbred lines than those already performed, which potentially increase grain and staygreen productivity by selecting the best 15 hybrids per prediction for each character separately.Staygreen e produtividade de grãos são caracteres agronômicos de interesse de serem avaliados em programas modernos de melhoramento de milho. Uma abordagem moderna para melhoramento destes caracteres pode ser a seleção genômica, cuja eficiência depende, dentre outros fatores, da escolha adequada do modelo de predição a ser utilizado, dos efeitos que serão contabilizados neste modelo e dos recursos e tempo necessários para o processo de predição dos fenótipos. Neste trabalho, três modelos paramétricos e um modelo não paramétrico foram utilizados na predição genômica multi-ambiental de híbridos simples de milho para staygreen e produtividade de grãos, considerando efeitos aditivos, exclusivamente, e em conjunto com efeitos de dominância. Os dados fenotípicos se referem à avaliação de 152 híbridos simples de milho, provenientes do cruzamento de 42 linhagens endogâmicas, avaliados em 13 ambientes para produtividade de grãos e 8 ambientes para staygreen. As linhagens foram genotipadas com 13.826 marcadores SNPs (Single Nucleotide Polymorphism) pelo o método GBS (Genotyping by Sequencing), sendo suas combinações genotípicas utilizadas para gerar os genótipos dos híbridos. As médias ajustadas para cada genótipo, em cada local, foram usadas para treinar os modelos de predição genômica. A habilidade preditiva foi mensurada por meio da correlação de Pearson, obtida por meio do sistema de ten-fold. As habilidades preditivas dos modelos variaram de 0,23 a 0,83 para produtividade de grãos e 0,44 a 0,72 para staygreen. A inclusão dos efeitos de dominância em todos os modelos paramétricos incrementou as habilidades preditivas para os dois caracteres, sendo que para produtividade de grãos o incremento médio foi de 25%. Isto confirma que a inclusão de efeitos nãoaditivos no modelo de predição permite explorar melhor a heterose e ter maior precisão na seleção genômica. Os modelos não diferiram entre atributos vinculados a capacidade preditiva. Devido a menor demanda computacional do GBLUP, ele é o mais indicado para predizer o desempenho fenotípico destes caracteres neste conjunto de dados. A predição com o modelo GBLUP aditivodominante indica a possibilidade de seleção de melhores combinações de linhagens do que as já realizadas que, potencialmente, elevam a produtividade de grãos e staygreen ao selecionar os melhores 15 híbridos por predição para cada caráter separadamente.Submitted by Dayane Basílio (dayanebasilio@ufg.br) on 2023-05-31T15:04:22Z No. of bitstreams: 2 Tese - Ailton Jose Crispim Filho - 2023.pdf: 2664317 bytes, checksum: 851e9da669ece105459d2548faeb9bab (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2023-06-01T10:56:52Z (GMT) No. of bitstreams: 2 Tese - Ailton Jose Crispim Filho - 2023.pdf: 2664317 bytes, checksum: 851e9da669ece105459d2548faeb9bab (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2023-06-01T10:56:52Z (GMT). No. of bitstreams: 2 Tese - Ailton Jose Crispim Filho - 2023.pdf: 2664317 bytes, checksum: 851e9da669ece105459d2548faeb9bab (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2023-04-28Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de GoiásPrograma de Pós-graduação em Genética e Melhoramento de Plantas (EA)UFGBrasilEscola de Agronomia - EA (RMG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessSeleção genômicaZea mays L.Efeito de dominânciaHabilidade preditivaGenomic selectionDominance effectPredictive abilityCIENCIAS AGRARIASModelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreenMulti-environment genomic prediction models in tropical maize: grain yield and staygreeninfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6050050050050021551reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/91b6bd67-117a-4e61-a851-501d2c023532/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/e22abc61-66f6-45b8-bee2-09e9dbf6ba79/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALTese - Ailton Jose Crispim Filho - 2023.pdfTese - Ailton Jose Crispim Filho - 2023.pdfapplication/pdf2664317http://repositorio.bc.ufg.br/tede/bitstreams/2362f659-9020-4725-a09e-b472fd245e0e/download851e9da669ece105459d2548faeb9babMD53tede/128752023-06-14 12:04:15.687http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/12875http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2023-06-14T15:04:15Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen |
dc.title.alternative.eng.fl_str_mv |
Multi-environment genomic prediction models in tropical maize: grain yield and staygreen |
title |
Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen |
spellingShingle |
Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen Crispim Filho, Ailton José Seleção genômica Zea mays L. Efeito de dominância Habilidade preditiva Genomic selection Dominance effect Predictive ability CIENCIAS AGRARIAS |
title_short |
Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen |
title_full |
Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen |
title_fullStr |
Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen |
title_full_unstemmed |
Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen |
title_sort |
Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen |
author |
Crispim Filho, Ailton José |
author_facet |
Crispim Filho, Ailton José |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Resende, Marcela Pedroso Mendes |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2080097211870591 |
dc.contributor.advisor-co1.fl_str_mv |
Coelho, Alexandre Siqueira Guedes |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/0840926305216925 |
dc.contributor.referee1.fl_str_mv |
Resende, Marcela Pedroso Mendes |
dc.contributor.referee2.fl_str_mv |
Môro, Gustavo Vitti |
dc.contributor.referee3.fl_str_mv |
Souza Júnior, Cláudio Lopes de |
dc.contributor.referee4.fl_str_mv |
Costa Neto, Germano Martins Ferreira |
dc.contributor.referee5.fl_str_mv |
Toledo, Fernando Henrique Ribeiro Barrozo |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9735629084160640 |
dc.contributor.author.fl_str_mv |
Crispim Filho, Ailton José |
contributor_str_mv |
Resende, Marcela Pedroso Mendes Coelho, Alexandre Siqueira Guedes Resende, Marcela Pedroso Mendes Môro, Gustavo Vitti Souza Júnior, Cláudio Lopes de Costa Neto, Germano Martins Ferreira Toledo, Fernando Henrique Ribeiro Barrozo |
dc.subject.por.fl_str_mv |
Seleção genômica Zea mays L. Efeito de dominância Habilidade preditiva |
topic |
Seleção genômica Zea mays L. Efeito de dominância Habilidade preditiva Genomic selection Dominance effect Predictive ability CIENCIAS AGRARIAS |
dc.subject.eng.fl_str_mv |
Genomic selection Dominance effect Predictive ability |
dc.subject.cnpq.fl_str_mv |
CIENCIAS AGRARIAS |
description |
Staygreen and grain yield are agronomic traits of interest to be evaluated in modern maize breeding programs. A modern approach to improving these traits can be genomic selection, whose efficiency depends, among other factors, on the proper choice of the prediction model to be used, the effects that will be accounted for in this model and the resources and time required for the prediction process of the phenotypes. In this work, three parametric models and a non-parametric model were used in the multi-environment genomic prediction of single maize hybrids for staygreen and grain yield, considering additive effects, exclusively, and together with dominance effects. The phenotypic data refer to the evaluation of 152 single maize hybrids, from the crossing of 42 inbred lines, evaluated in 13 environments for grain yield and 8 environments for staygreen. The lines were genotyped with 13,826 SNPs (Single Nucleotide Polymorphism) markers using the GBS (Genotyping by Sequencing) method, and their genotypic combinations were used to generate the genotypes of the hybrids. Adjusted means for each genotype at each location were used to train the genomic prediction models. The predictive ability was measured using Pearson's mean correlation, obtained using the ten-fold system. The models' predictive abilities ranged from 0.23 to 0.83 for grain yield and 0.44 to 0.72 for staygreen. The inclusion of dominance effects in all parametric models increased the predictive abilities for both traits, and for grain yield the average increase was 25%. This confirms that the inclusion of non-additive effects in the prediction model allows better exploration of heterosis and greater precision in genomic selection. The models did not differ between attributes linked to predictive ability. Due to the lower computational demand of GBLUP, it is the most suitable to predict the phenotypic performance of these characters in this data set. Prediction with the additive-dominant GBLUP model indicates the possibility of selecting better combinations of inbred lines than those already performed, which potentially increase grain and staygreen productivity by selecting the best 15 hybrids per prediction for each character separately. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-06-01T10:56:52Z |
dc.date.available.fl_str_mv |
2023-06-01T10:56:52Z |
dc.date.issued.fl_str_mv |
2023-04-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CRISPIM FILHO, A. J. Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen. 2023. 75 f. Tese (Doutorado em Genética e Melhoramento de Plantas) - Universidade Federal de Goiás, Goiânia, 2023. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/12875 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000001tfq |
identifier_str_mv |
CRISPIM FILHO, A. J. Modelos de predição genômica multi-ambiental em milho tropical: produtividade de grãos e staygreen. 2023. 75 f. Tese (Doutorado em Genética e Melhoramento de Plantas) - Universidade Federal de Goiás, Goiânia, 2023. ark:/38995/0013000001tfq |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/12875 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
60 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 |
dc.relation.department.fl_str_mv |
2 |
dc.relation.cnpq.fl_str_mv |
155 |
dc.relation.sponsorship.fl_str_mv |
1 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Genética e Melhoramento de Plantas (EA) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola de Agronomia - EA (RMG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/91b6bd67-117a-4e61-a851-501d2c023532/download http://repositorio.bc.ufg.br/tede/bitstreams/e22abc61-66f6-45b8-bee2-09e9dbf6ba79/download http://repositorio.bc.ufg.br/tede/bitstreams/2362f659-9020-4725-a09e-b472fd245e0e/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 851e9da669ece105459d2548faeb9bab |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172527999156224 |