T-singularidade: dinâmica, estabilidade e teoria de controle

Detalhes bibliográficos
Autor(a) principal: Cespedes, Oscar Alexander Ramírez
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/00130000065hk
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/3087
Resumo: Consider a nonsmooth vector fields in R3 defined by parts on a smooth manifold of dimension one, such that it is tangent to both sides simultaneously, in fold points, visibles or invisibles. In this paper we study a local dynamics of the singularity type two-fold invisible-invisible known as Teixeira singularity, revealing new scenes of bifurcations and the nonlinear effects around the bifurcation already known, determining conditions for the existence of invariant sets (limit cycles) and the possible existence of a set with a nondeterministic chaos. Furthermore, we discuss the occurrence of this singularity in switched feedback control systems and some numerical simulations are presented.
id UFG-2_5eb901fb4f3c8e11f3ab2fb5b34e49a3
oai_identifier_str oai:repositorio.bc.ufg.br:tede/3087
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Medrado, João Carlos da Rochahttp://lattes.cnpq.br/5021927574622286http://lattes.cnpq.br/1561942795469040Cespedes, Oscar Alexander Ramírez2014-09-18T15:36:44Z2013-03-22CESPEDES, Oscar Alexander Ramírez. T-singularidade: dinâmica, estabilidade e teoria de controle. 2013. 76 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2013.http://repositorio.bc.ufg.br/tede/handle/tede/3087ark:/38995/00130000065hkConsider a nonsmooth vector fields in R3 defined by parts on a smooth manifold of dimension one, such that it is tangent to both sides simultaneously, in fold points, visibles or invisibles. In this paper we study a local dynamics of the singularity type two-fold invisible-invisible known as Teixeira singularity, revealing new scenes of bifurcations and the nonlinear effects around the bifurcation already known, determining conditions for the existence of invariant sets (limit cycles) and the possible existence of a set with a nondeterministic chaos. Furthermore, we discuss the occurrence of this singularity in switched feedback control systems and some numerical simulations are presented.Quando um campo vetorial não suave é definido por partes, sobre uma variedade regular de codimensão um, esse pode ser simultaneamente tangente a ambos os lados, em pontos de dobra, visíveis ou invisíveis. Neste trabalho é estudada a dinâmica local da singularidade; tipo dobra-dobra invisível-invisível conhecida como Singularidade Teixeira, revelando novos cenários de bifurcações e os efeitos não lineares em torno da bifurcação já conhecida, determinando condições para a existência de conjuntos invariantes (ciclos limite), e a possível existência de um conjunto com uma forma não-determinística do caos. Além disso, discute-se a ocorrência de tal singularidade em sistemas de controle com retroalimentação comutante. Algumas simulações numéricas são apresentadas.Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-09-18T14:41:50Z No. of bitstreams: 2 Dissertacao Oscar Alexander Ramirez Cespedes.pdf: 2846357 bytes, checksum: 734d0022f388a5e80f1343acade03c64 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-18T15:36:44Z (GMT) No. of bitstreams: 2 Dissertacao Oscar Alexander Ramirez Cespedes.pdf: 2846357 bytes, checksum: 734d0022f388a5e80f1343acade03c64 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2014-09-18T15:36:44Z (GMT). No. of bitstreams: 2 Dissertacao Oscar Alexander Ramirez Cespedes.pdf: 2846357 bytes, checksum: 734d0022f388a5e80f1343acade03c64 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-03-22Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/7920/Dissertacao%20Oscar%20Alexander%20Ramirez%20Cespedes.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)[1] A.S. HODEL, C. H. Variable-structure pid control to prevent integrator windup. IEEE Trans. Ind. Electron, 48:442–451, 2001. [2] BROGLIATO, B. Nonsmooth Mechanics — Models Dynamics and Control. Springer-Verlag, London, second edition, 1999. [3] BROGLIATO, B. Impacts in Mechanical Systems — Analysis and Modelling in:: Lecture Notes in Physics. Springer-Verlag, New York, first edition, 2000. [4] E A. COLOMBO, M. J. The two fold singularity of discontinuous vector fields. SIAM J. Appl. Dyn. Syst., (5):624–640, 2009. [5] E. CONTE, A. F; ZBILUT, J. P. On a simple case of possible non-deterministic chaotic behavior in compartment theory of biological observables,. Chaos Solitons Fractals, (22):277–284, 2004. [6] FEO, O. D. Modeling diversity by strange attractors with application to temporal pattern recognition. (Tesis Doctoral):École Politechnique Fédérale de Lausanne, 2001. [7] FILIPPOV, A. F. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988. [8] GATTO, M; MANDRIOLI, D. Pseudoequilibrium in dynamical systems. Int. J. Systems Sci., (4):809–824, 1973. [9] GUCKENHEIMER, J; HOLMES, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Applied Mathematical Sciences; 42). Springer-Verlag, New York, first edition, 1983. [10] JEFFREY, M. R. Non determinism in the limit of nonsmooth dynamics. SIAM J. Applied Dynamical Systems, 10(2):423–451, 2011. [11] JEFFREY, M; FERNÁNDEZ-GARCÍA, S. Structural stability of the two-fold singularity. SIAM J. Appl. Dyn. Syst., (5):624–640, 2012. [12] J.P. HESPANHA, A. M. Switching between stabilizing controllers. Automatica, volume = 38, number = 11, pages = 1905-1917, 2002. [13] KUZNETSOV, Y. A. Elements of Applied Bifurcation Theory. Springer-Verlag, New York, third edition, 2004. [14] MEISS, J. D. Differential Dynamical Systems. AM Monogr. Math. Comput. 14, SIAM, Philadelhia, 2007. [15] P. T. PIIROINEN, Y. A. K. An event-driven method to simulate filippov systems with accurate computing of sliding motions. ACM Trans. Math. Software, (34):article 13, 2008. [16] SOTOMAYOR, J. Lições de Equações Diferenciais Ordinárias. Projeto Euclides, Rio de Janeiro, first edition, 1979. [17] TEIXEIRA, M. A. Generic bifurcation of sliding vector fields. J. Math. Anal. Appl., (176):436–457, 1993. [18] TEIXEIRA, M. Stability conditions for discontinuous vector fields. J. Differ. Equations, (88):15–29, 1990. [19] UTKIN, V. Variable structure systems with sliding modes. Automatic Control, IEEE Transactions on, 22(2):212–222, 1977. [20] UTKIN, V. Vss premise in xx century: Evidences of a witness. proceedings of the 6th ieee international workshop on variable structure systems. World Scientific, p. 1–34, 2000.6600717948137941247600600600600-4268777512335152015-7090823417984401694-2555911436985713659http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessT-singularidadeDinâmicaEstabilidade e teoria de controleT-singularityDynamicsStability and control theoryCIENCIAS EXATAS E DA TERRA::MATEMATICAT-singularidade: dinâmica, estabilidade e teoria de controleT-singularity: dynamics, stability and control theoryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/67866888-97a7-4792-bd06-8b52e1064c35/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/de0d3970-d9f6-407b-8379-fc881988b8e5/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822302http://repositorio.bc.ufg.br/tede/bitstreams/bb517f30-f520-47e9-9237-62885c1bcdb4/download1e0094e9d8adcf16b18effef4ce7ed83MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/1d84d0d7-cbae-433c-b11e-4980d7555b0c/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALDissertacao Oscar Alexander Ramirez Cespedes.pdfDissertacao Oscar Alexander Ramirez Cespedes.pdfDissertação - PPGMAT/RG - Oscar Alexandre Ramirez Cespedesapplication/pdf2846357http://repositorio.bc.ufg.br/tede/bitstreams/f76ede9f-fc66-487b-96a3-d2fab3edf58d/download734d0022f388a5e80f1343acade03c64MD55TEXTDissertacao Oscar Alexander Ramirez Cespedes.pdf.txtDissertacao Oscar Alexander Ramirez Cespedes.pdf.txtExtracted Texttext/plain111066http://repositorio.bc.ufg.br/tede/bitstreams/f070b0c6-46ab-4f3b-9381-92f9b14aa925/download2936251c9a4f7801667fe3f58b5b667bMD56THUMBNAILDissertacao Oscar Alexander Ramirez Cespedes.pdf.jpgDissertacao Oscar Alexander Ramirez Cespedes.pdf.jpgGenerated Thumbnailimage/jpeg3272http://repositorio.bc.ufg.br/tede/bitstreams/b10d25d0-806c-4cc8-a041-addb9e78f108/download9b272616eaf5d7a318af97ac6cf86ec4MD57tede/30872015-02-02 10:38:03.145http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/3087http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2015-02-02T12:38:03Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv T-singularidade: dinâmica, estabilidade e teoria de controle
dc.title.alternative.eng.fl_str_mv T-singularity: dynamics, stability and control theory
title T-singularidade: dinâmica, estabilidade e teoria de controle
spellingShingle T-singularidade: dinâmica, estabilidade e teoria de controle
Cespedes, Oscar Alexander Ramírez
T-singularidade
Dinâmica
Estabilidade e teoria de controle
T-singularity
Dynamics
Stability and control theory
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short T-singularidade: dinâmica, estabilidade e teoria de controle
title_full T-singularidade: dinâmica, estabilidade e teoria de controle
title_fullStr T-singularidade: dinâmica, estabilidade e teoria de controle
title_full_unstemmed T-singularidade: dinâmica, estabilidade e teoria de controle
title_sort T-singularidade: dinâmica, estabilidade e teoria de controle
author Cespedes, Oscar Alexander Ramírez
author_facet Cespedes, Oscar Alexander Ramírez
author_role author
dc.contributor.advisor1.fl_str_mv Medrado, João Carlos da Rocha
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5021927574622286
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1561942795469040
dc.contributor.author.fl_str_mv Cespedes, Oscar Alexander Ramírez
contributor_str_mv Medrado, João Carlos da Rocha
dc.subject.por.fl_str_mv T-singularidade
Dinâmica
Estabilidade e teoria de controle
topic T-singularidade
Dinâmica
Estabilidade e teoria de controle
T-singularity
Dynamics
Stability and control theory
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.eng.fl_str_mv T-singularity
Dynamics
Stability and control theory
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description Consider a nonsmooth vector fields in R3 defined by parts on a smooth manifold of dimension one, such that it is tangent to both sides simultaneously, in fold points, visibles or invisibles. In this paper we study a local dynamics of the singularity type two-fold invisible-invisible known as Teixeira singularity, revealing new scenes of bifurcations and the nonlinear effects around the bifurcation already known, determining conditions for the existence of invariant sets (limit cycles) and the possible existence of a set with a nondeterministic chaos. Furthermore, we discuss the occurrence of this singularity in switched feedback control systems and some numerical simulations are presented.
publishDate 2013
dc.date.issued.fl_str_mv 2013-03-22
dc.date.accessioned.fl_str_mv 2014-09-18T15:36:44Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CESPEDES, Oscar Alexander Ramírez. T-singularidade: dinâmica, estabilidade e teoria de controle. 2013. 76 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2013.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/3087
dc.identifier.dark.fl_str_mv ark:/38995/00130000065hk
identifier_str_mv CESPEDES, Oscar Alexander Ramírez. T-singularidade: dinâmica, estabilidade e teoria de controle. 2013. 76 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2013.
ark:/38995/00130000065hk
url http://repositorio.bc.ufg.br/tede/handle/tede/3087
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -7090823417984401694
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.relation.references.por.fl_str_mv [1] A.S. HODEL, C. H. Variable-structure pid control to prevent integrator windup. IEEE Trans. Ind. Electron, 48:442–451, 2001. [2] BROGLIATO, B. Nonsmooth Mechanics — Models Dynamics and Control. Springer-Verlag, London, second edition, 1999. [3] BROGLIATO, B. Impacts in Mechanical Systems — Analysis and Modelling in:: Lecture Notes in Physics. Springer-Verlag, New York, first edition, 2000. [4] E A. COLOMBO, M. J. The two fold singularity of discontinuous vector fields. SIAM J. Appl. Dyn. Syst., (5):624–640, 2009. [5] E. CONTE, A. F; ZBILUT, J. P. On a simple case of possible non-deterministic chaotic behavior in compartment theory of biological observables,. Chaos Solitons Fractals, (22):277–284, 2004. [6] FEO, O. D. Modeling diversity by strange attractors with application to temporal pattern recognition. (Tesis Doctoral):École Politechnique Fédérale de Lausanne, 2001. [7] FILIPPOV, A. F. Differential Equations with Discontinuous Righthand Sides. Kluwer Academic Publishers, Dordrecht, The Netherlands, 1988. [8] GATTO, M; MANDRIOLI, D. Pseudoequilibrium in dynamical systems. Int. J. Systems Sci., (4):809–824, 1973. [9] GUCKENHEIMER, J; HOLMES, P. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Applied Mathematical Sciences; 42). Springer-Verlag, New York, first edition, 1983. [10] JEFFREY, M. R. Non determinism in the limit of nonsmooth dynamics. SIAM J. Applied Dynamical Systems, 10(2):423–451, 2011. [11] JEFFREY, M; FERNÁNDEZ-GARCÍA, S. Structural stability of the two-fold singularity. SIAM J. Appl. Dyn. Syst., (5):624–640, 2012. [12] J.P. HESPANHA, A. M. Switching between stabilizing controllers. Automatica, volume = 38, number = 11, pages = 1905-1917, 2002. [13] KUZNETSOV, Y. A. Elements of Applied Bifurcation Theory. Springer-Verlag, New York, third edition, 2004. [14] MEISS, J. D. Differential Dynamical Systems. AM Monogr. Math. Comput. 14, SIAM, Philadelhia, 2007. [15] P. T. PIIROINEN, Y. A. K. An event-driven method to simulate filippov systems with accurate computing of sliding motions. ACM Trans. Math. Software, (34):article 13, 2008. [16] SOTOMAYOR, J. Lições de Equações Diferenciais Ordinárias. Projeto Euclides, Rio de Janeiro, first edition, 1979. [17] TEIXEIRA, M. A. Generic bifurcation of sliding vector fields. J. Math. Anal. Appl., (176):436–457, 1993. [18] TEIXEIRA, M. Stability conditions for discontinuous vector fields. J. Differ. Equations, (88):15–29, 1990. [19] UTKIN, V. Variable structure systems with sliding modes. Automatic Control, IEEE Transactions on, 22(2):212–222, 1977. [20] UTKIN, V. Vss premise in xx century: Evidences of a witness. proceedings of the 6th ieee international workshop on variable structure systems. World Scientific, p. 1–34, 2000.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/67866888-97a7-4792-bd06-8b52e1064c35/download
http://repositorio.bc.ufg.br/tede/bitstreams/de0d3970-d9f6-407b-8379-fc881988b8e5/download
http://repositorio.bc.ufg.br/tede/bitstreams/bb517f30-f520-47e9-9237-62885c1bcdb4/download
http://repositorio.bc.ufg.br/tede/bitstreams/1d84d0d7-cbae-433c-b11e-4980d7555b0c/download
http://repositorio.bc.ufg.br/tede/bitstreams/f76ede9f-fc66-487b-96a3-d2fab3edf58d/download
http://repositorio.bc.ufg.br/tede/bitstreams/f070b0c6-46ab-4f3b-9381-92f9b14aa925/download
http://repositorio.bc.ufg.br/tede/bitstreams/b10d25d0-806c-4cc8-a041-addb9e78f108/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
1e0094e9d8adcf16b18effef4ce7ed83
9da0b6dfac957114c6a7714714b86306
734d0022f388a5e80f1343acade03c64
2936251c9a4f7801667fe3f58b5b667b
9b272616eaf5d7a318af97ac6cf86ec4
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172575562563584