Sobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímpar
Autor(a) principal: | |
---|---|
Data de Publicação: | 2013 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000f2sn |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/3090 |
Resumo: | This document presents an approach and development of some of the results of Shumyatsky in [14, 15, 16, 17, 18], where he worked with automorphisms of order two in finite groups of odd order, mainly showing the influence that the structure of the centralizer has on that of Group. Let G be a group with odd order, and ϕ an automorphism on G, of order two, where G = [G,ϕ], and given a limitation in the order of the centralizer of ϕ regard to G, CG(ϕ), which induces a limitation in the order of derived group G′ of group G, and we also verified that G has a normal subgroup H that is ϕ-invariant, such that H′ ≤ Gϕ and its index [G : H] is bounded with the initial limitation. With the same hypothesis of the group G and with the same limitation of the order of the centralizer of the automorphism, let V a abelian p-group such that G⟨ϕ⟩ act faithful and irreductible on V, then there is a bounded constant k, limitated by a function depending only on the parameter m, where m is tha limitation in the order of CG(ϕ), and elements x1, ...xk ∈ G−ϕ such that V = ρϕx 1,...,xk(V−ϕ). |
id |
UFG-2_7036a494736c19c717183bcffa9df3a7 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/3090 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Lima, Aline de Souzahttp://lattes.cnpq.br/1518865173435209http://lattes.cnpq.br/9263250131156705Rojas, Yerko Contreras2014-09-18T15:43:59Z2013-07-05ROJAS, Yerko Contreras. Sobre a Influência dos Centralizadores dos Automorfismos de Ordem Dois em Grupos de Ordem Ímpar. 2013. 59 f. Dissertação (Mestrado em Matemática ) - Universidade Federal de Goiás, Goiânia, 2013.http://repositorio.bc.ufg.br/tede/handle/tede/3090ark:/38995/001300000f2snThis document presents an approach and development of some of the results of Shumyatsky in [14, 15, 16, 17, 18], where he worked with automorphisms of order two in finite groups of odd order, mainly showing the influence that the structure of the centralizer has on that of Group. Let G be a group with odd order, and ϕ an automorphism on G, of order two, where G = [G,ϕ], and given a limitation in the order of the centralizer of ϕ regard to G, CG(ϕ), which induces a limitation in the order of derived group G′ of group G, and we also verified that G has a normal subgroup H that is ϕ-invariant, such that H′ ≤ Gϕ and its index [G : H] is bounded with the initial limitation. With the same hypothesis of the group G and with the same limitation of the order of the centralizer of the automorphism, let V a abelian p-group such that G⟨ϕ⟩ act faithful and irreductible on V, then there is a bounded constant k, limitated by a function depending only on the parameter m, where m is tha limitation in the order of CG(ϕ), and elements x1, ...xk ∈ G−ϕ such that V = ρϕx 1,...,xk(V−ϕ).O trabalho baseia-se na apresentação e desenvolvimento de alguns resultados expostos por Shumyatsky em [14, 15, 16, 17, 18], onde trabalha com automorfismos de ordem dois em grupos de ordem ímpar, mostrando fundamentalmente a influência da estrutura do centralizador do automorfismo na estrutura do grupo. Seja G um grupo de ordem ímpar e ϕ um automorfismo de G, de ordem dois, tal que G = [G,ϕ], dada uma limitação na ordem do centralizador de ϕ em G, CG(ϕ), a mesma induz uma limitação na ordem do grupo derivado G′ do grupo G, além disso verificamos que G tem um subgrupo H normal ϕ-invariante, tal que H′ ≤ Gϕ e o índice [G : H] é limitado dependendo da limitação inicial de CG(ϕ). Nas mesmas hipóteses do grupo G e com a mesma limitação da ordem do centralizador do automorfismo, seja V um p-grupo abeliano, tal que G⟨ϕ⟩ age fiel e irredutivelmente sobre V, então existe uma constante k, limitada por uma função que depende só da limitação de CG(ϕ), e elementos x1, ...xk ∈ G−ϕ, tal que V = ρϕx 1,...,xk(V−ϕ).Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2014-09-18T15:33:16Z No. of bitstreams: 2 Dissertacao Yerko Contreras Rojas.pdf: 673331 bytes, checksum: 5359343f8c3a32e21369c3bc57917634 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2014-09-18T15:43:59Z (GMT) No. of bitstreams: 2 Dissertacao Yerko Contreras Rojas.pdf: 673331 bytes, checksum: 5359343f8c3a32e21369c3bc57917634 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2014-09-18T15:43:59Z (GMT). No. of bitstreams: 2 Dissertacao Yerko Contreras Rojas.pdf: 673331 bytes, checksum: 5359343f8c3a32e21369c3bc57917634 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2013-07-05Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/7930/Dissertacao%20Yerko%20Contreras%20Rojas.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)[1] ASAR, A. Involutory automorphisms of groups of odd order. Arch. Math.36, p. 97–103, 1981. [2] BURNSIDE, W. Theory of Groups. Dover, New York, 1955. [3] FEIT, W. THOMPSON, J. Solvability of groups of odd order. Pacific J Math 13, p. 773–1029, 1963. [4] GORENSTEIN, D. Finite Groups. Harper and Row, New York, 1968. [5] HARTLEY, B. Periodic locally soluble groups containing an element of prime order with cêrnikov centralizer. Q. J Math, Oxford,2 33, p. 309–323, 1982. [6] HARTLEY, B. MEIXNER, T. Periodic groups in which the centralizer of an involution has bounded order. J Algebra, 64:285–291, 1980. [7] HARTLEY, B. MEIXNER, T. Finite soluble groups in which the centralizer of an element the prime order is small. Arch. Math., 36:211–213, 1981. [8] HIGMAN, G. Groups and rings having automorphisms without non-trivial fixed elements. J. London Math. Soc., 2(32):321–334, 1957. [9] HUNDERFORD, T. Algebra. Springer-Verlag, New York, 1980. [10] ISAACS, M. Finite Group Theory. Volumen 92 de Graduate Studies in Mathematics, American Mathematical Soc, 2008. [11] KHUKHRO, E. Nilpotent Groups and their Automorphisms. de Gruyter-Verlag, Berlin, 1993. [12] KOVACS, L.G. WALL, G. Involutory automorphisms of groups of odd order and their fixed point groups. Nagoya Math J, (27):113–120, 1966. [13] ROTMAN, J. An Introduction to the Theory of Groups. Springer-Verlag, fourth edition, 1994. [14] SHUMYATSKY, P. Involutory automorphisms of locally soluble periodic groups. J Algebra, (155):36–44, 1993. [15] SHUMYATSKY, P. Involutory automorphisms of periodic groups. Internat J Algebra Comput, (6):745–749, 1996. [16] SHUMYATSKY, P. Involutory automorphisms of finite groups and their centralizers. Arch Math (Basel), (71):425–432, 1998. [17] SHUMYATSKY, P. Involutory automorphisms of groups of odd order. Monatsh. Math, (146):77–82, 2005. [18] SHUMYATSKY, P. Centralizer of involutory automorphisms of groups of odd order. Journal of Álgebra, (315):954–962, 2007. [19] THOMPSON, J. Finite groups with fixed point-free-automorphisms of prime order. Proc. Natl. Acad. Sci. U.S.A., (45):578–581, 1959. [20] THOMPSON, J. automorphisms of solvable groups. Journal. Algebra, (1):259–267, 1964. [21] WARD, J. Involutory automorphisms of groups of odd order. J Austral Math Soc, (6):480–494, 1966.6600717948137941247600600600600-4268777512335152015-85775632160526569622075167498588264571http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessGrupos finitosGrupos nilpotentesCentralizadores de automorfimosAutomorfismos involutivosFinite groupsNilpotent groupsCentralizer of automorphismsInvolutory automorphismsALGEBRA::LOGICA MATEMATICASobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímparCentralizers of involutory automorphisms of groups of odd orderinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/e847fae2-946f-4807-b995-1d12090f80aa/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/cbc4cee1-e080-420a-ae18-2e0117a5388e/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822302http://repositorio.bc.ufg.br/tede/bitstreams/daa594bb-25c6-43a0-947a-9827424087e1/download1e0094e9d8adcf16b18effef4ce7ed83MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/2184c918-b8e9-44f4-ab0e-55031e23f227/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALDissertacao Yerko Contreras Rojas.pdfDissertacao Yerko Contreras Rojas.pdfDissertação - PPGMAT/RG - Yerko Contreras Rojasapplication/pdf673331http://repositorio.bc.ufg.br/tede/bitstreams/1cbbe809-ad17-4891-b01b-1341c31fd5d3/download5359343f8c3a32e21369c3bc57917634MD55TEXTDissertacao Yerko Contreras Rojas.pdf.txtDissertacao Yerko Contreras Rojas.pdf.txtExtracted Texttext/plain105411http://repositorio.bc.ufg.br/tede/bitstreams/3203557e-786d-4e52-b9c1-141ab80c2e8a/download54d62c40de5f5d419073ac7645cd39a6MD56THUMBNAILDissertacao Yerko Contreras Rojas.pdf.jpgDissertacao Yerko Contreras Rojas.pdf.jpgGenerated Thumbnailimage/jpeg1943http://repositorio.bc.ufg.br/tede/bitstreams/639efca4-8aef-440a-a43e-1f169cf1a3cf/downloadcc73c4c239a4c332d642ba1e7c7a9fb2MD57tede/30902014-09-19 03:02:16.984http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/3090http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2014-09-19T06:02:16Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Sobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímpar |
dc.title.alternative.eng.fl_str_mv |
Centralizers of involutory automorphisms of groups of odd order |
title |
Sobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímpar |
spellingShingle |
Sobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímpar Rojas, Yerko Contreras Grupos finitos Grupos nilpotentes Centralizadores de automorfimos Automorfismos involutivos Finite groups Nilpotent groups Centralizer of automorphisms Involutory automorphisms ALGEBRA::LOGICA MATEMATICA |
title_short |
Sobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímpar |
title_full |
Sobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímpar |
title_fullStr |
Sobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímpar |
title_full_unstemmed |
Sobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímpar |
title_sort |
Sobre a influência dos centralizadores dos automorfismos de ordem dois em grupos de ordem ímpar |
author |
Rojas, Yerko Contreras |
author_facet |
Rojas, Yerko Contreras |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Lima, Aline de Souza |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1518865173435209 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/9263250131156705 |
dc.contributor.author.fl_str_mv |
Rojas, Yerko Contreras |
contributor_str_mv |
Lima, Aline de Souza |
dc.subject.por.fl_str_mv |
Grupos finitos Grupos nilpotentes Centralizadores de automorfimos Automorfismos involutivos |
topic |
Grupos finitos Grupos nilpotentes Centralizadores de automorfimos Automorfismos involutivos Finite groups Nilpotent groups Centralizer of automorphisms Involutory automorphisms ALGEBRA::LOGICA MATEMATICA |
dc.subject.eng.fl_str_mv |
Finite groups Nilpotent groups Centralizer of automorphisms Involutory automorphisms |
dc.subject.cnpq.fl_str_mv |
ALGEBRA::LOGICA MATEMATICA |
description |
This document presents an approach and development of some of the results of Shumyatsky in [14, 15, 16, 17, 18], where he worked with automorphisms of order two in finite groups of odd order, mainly showing the influence that the structure of the centralizer has on that of Group. Let G be a group with odd order, and ϕ an automorphism on G, of order two, where G = [G,ϕ], and given a limitation in the order of the centralizer of ϕ regard to G, CG(ϕ), which induces a limitation in the order of derived group G′ of group G, and we also verified that G has a normal subgroup H that is ϕ-invariant, such that H′ ≤ Gϕ and its index [G : H] is bounded with the initial limitation. With the same hypothesis of the group G and with the same limitation of the order of the centralizer of the automorphism, let V a abelian p-group such that G⟨ϕ⟩ act faithful and irreductible on V, then there is a bounded constant k, limitated by a function depending only on the parameter m, where m is tha limitation in the order of CG(ϕ), and elements x1, ...xk ∈ G−ϕ such that V = ρϕx 1,...,xk(V−ϕ). |
publishDate |
2013 |
dc.date.issued.fl_str_mv |
2013-07-05 |
dc.date.accessioned.fl_str_mv |
2014-09-18T15:43:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
ROJAS, Yerko Contreras. Sobre a Influência dos Centralizadores dos Automorfismos de Ordem Dois em Grupos de Ordem Ímpar. 2013. 59 f. Dissertação (Mestrado em Matemática ) - Universidade Federal de Goiás, Goiânia, 2013. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/3090 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000f2sn |
identifier_str_mv |
ROJAS, Yerko Contreras. Sobre a Influência dos Centralizadores dos Automorfismos de Ordem Dois em Grupos de Ordem Ímpar. 2013. 59 f. Dissertação (Mestrado em Matemática ) - Universidade Federal de Goiás, Goiânia, 2013. ark:/38995/001300000f2sn |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/3090 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-8577563216052656962 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.relation.references.por.fl_str_mv |
[1] ASAR, A. Involutory automorphisms of groups of odd order. Arch. Math.36, p. 97–103, 1981. [2] BURNSIDE, W. Theory of Groups. Dover, New York, 1955. [3] FEIT, W. THOMPSON, J. Solvability of groups of odd order. Pacific J Math 13, p. 773–1029, 1963. [4] GORENSTEIN, D. Finite Groups. Harper and Row, New York, 1968. [5] HARTLEY, B. Periodic locally soluble groups containing an element of prime order with cêrnikov centralizer. Q. J Math, Oxford,2 33, p. 309–323, 1982. [6] HARTLEY, B. MEIXNER, T. Periodic groups in which the centralizer of an involution has bounded order. J Algebra, 64:285–291, 1980. [7] HARTLEY, B. MEIXNER, T. Finite soluble groups in which the centralizer of an element the prime order is small. Arch. Math., 36:211–213, 1981. [8] HIGMAN, G. Groups and rings having automorphisms without non-trivial fixed elements. J. London Math. Soc., 2(32):321–334, 1957. [9] HUNDERFORD, T. Algebra. Springer-Verlag, New York, 1980. [10] ISAACS, M. Finite Group Theory. Volumen 92 de Graduate Studies in Mathematics, American Mathematical Soc, 2008. [11] KHUKHRO, E. Nilpotent Groups and their Automorphisms. de Gruyter-Verlag, Berlin, 1993. [12] KOVACS, L.G. WALL, G. Involutory automorphisms of groups of odd order and their fixed point groups. Nagoya Math J, (27):113–120, 1966. [13] ROTMAN, J. An Introduction to the Theory of Groups. Springer-Verlag, fourth edition, 1994. [14] SHUMYATSKY, P. Involutory automorphisms of locally soluble periodic groups. J Algebra, (155):36–44, 1993. [15] SHUMYATSKY, P. Involutory automorphisms of periodic groups. Internat J Algebra Comput, (6):745–749, 1996. [16] SHUMYATSKY, P. Involutory automorphisms of finite groups and their centralizers. Arch Math (Basel), (71):425–432, 1998. [17] SHUMYATSKY, P. Involutory automorphisms of groups of odd order. Monatsh. Math, (146):77–82, 2005. [18] SHUMYATSKY, P. Centralizer of involutory automorphisms of groups of odd order. Journal of Álgebra, (315):954–962, 2007. [19] THOMPSON, J. Finite groups with fixed point-free-automorphisms of prime order. Proc. Natl. Acad. Sci. U.S.A., (45):578–581, 1959. [20] THOMPSON, J. automorphisms of solvable groups. Journal. Algebra, (1):259–267, 1964. [21] WARD, J. Involutory automorphisms of groups of odd order. J Austral Math Soc, (6):480–494, 1966. |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/e847fae2-946f-4807-b995-1d12090f80aa/download http://repositorio.bc.ufg.br/tede/bitstreams/cbc4cee1-e080-420a-ae18-2e0117a5388e/download http://repositorio.bc.ufg.br/tede/bitstreams/daa594bb-25c6-43a0-947a-9827424087e1/download http://repositorio.bc.ufg.br/tede/bitstreams/2184c918-b8e9-44f4-ab0e-55031e23f227/download http://repositorio.bc.ufg.br/tede/bitstreams/1cbbe809-ad17-4891-b01b-1341c31fd5d3/download http://repositorio.bc.ufg.br/tede/bitstreams/3203557e-786d-4e52-b9c1-141ab80c2e8a/download http://repositorio.bc.ufg.br/tede/bitstreams/639efca4-8aef-440a-a43e-1f169cf1a3cf/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f 1e0094e9d8adcf16b18effef4ce7ed83 9da0b6dfac957114c6a7714714b86306 5359343f8c3a32e21369c3bc57917634 54d62c40de5f5d419073ac7645cd39a6 cc73c4c239a4c332d642ba1e7c7a9fb2 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1813816980016201728 |