Vetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquida

Detalhes bibliográficos
Autor(a) principal: RODRIGUES, Harley Fernandes
Data de Publicação: 2011
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000001b39
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tde/813
Resumo: In this work we developed a Dip Coating method that could control the temperature gradient between a substrate and the material that one wants to adsorb at its surface. In particular, the adsorption of biocompatible magnetic nanoparticles at the surface of bare metal Stents, under different experimental conditions, was investigated. The magnetic nanoparticles consisted of magnetite coated with tripoliphosphate (mean diameter 7.68 nm and standard deviation 1.88 nm) dispersed in water at physiological conditions, while the Stent was a CoCr based-one (Cronus stent from Scitech with 16 mm length). Nine series of experiments were performed where it was controlled parameters as: time of adsorption, stent temperature and magnetic fluid temperature. The stents coated with nanoparticles were magnetically characterized using a vibrating sample magnetometer (VSM), which allowed us to determine the number of nanoparticles at the stent surface. The increase of the magnetic moment of the stent with the increase of the adsorption time was theoretically modeled, with an excellent experimental agreement, as a transient diffusion process of nanoparticles at the interface stent-magnetic fluid, which clearly indicates an important diffusive contribution. Strong evidences of thermal diffusion (Soret effect), i.e. nanoparticle diffusion due to temperature gradient between the stent and the magnetic fluid, were shown, suggesting the possibility of nanostructures vectorization through thermal induced mechanisms. The spatial distribution of nanoparticles at the surface of the stent was investigated by Scanning Electron Microscopy (SEM) and X-ray Spectroscopy by Dispersive Energy (EDS). Measurements of the compositional mapping and images of SEM revealed that the nanoparticles are not homogeneously distributed, being concentrated at the edges of the stents for the experimental conditions investigated in this work. As the VSM data, the EDS of the stents revealed an increase of the quantity of adsorbed magnetic nanoparticles at the surface with the increase of the adsorption time. The same theoretical model, know considering the amount of 26Fe in the chemical composition of the coated stent, was able to explain the experimental data. Finally, a comparison was made, using the compositional mapping study of the coated stents, between the Dip Coating and the Spray technique. The later showed a more homogeneous distribution of nanoparticles at the surface of the stent, suggesting that this technique is more adequate on the development of a biomedical nanoproduct for clinical tests.
id UFG-2_77abc0c2a8c8df5f9c673036fef41eed
oai_identifier_str oai:repositorio.bc.ufg.br:tde/813
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling BAKUZIS, Andris Figueiroahttp://lattes.cnpq.br/3477269475651042http://lattes.cnpq.br/8588659356537389RODRIGUES, Harley Fernandes2014-07-29T15:07:09Z2012-03-302011-08-23RODRIGUES, Harley Fernandes. Thermally induced vectorization of Biocompatible Magnetic Nanoparticles: an application to cover Bare Metal Stents by Dip Coating. 2011. 153 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Goiás, Goiânia, 2011.http://repositorio.bc.ufg.br/tede/handle/tde/813ark:/38995/0013000001b39In this work we developed a Dip Coating method that could control the temperature gradient between a substrate and the material that one wants to adsorb at its surface. In particular, the adsorption of biocompatible magnetic nanoparticles at the surface of bare metal Stents, under different experimental conditions, was investigated. The magnetic nanoparticles consisted of magnetite coated with tripoliphosphate (mean diameter 7.68 nm and standard deviation 1.88 nm) dispersed in water at physiological conditions, while the Stent was a CoCr based-one (Cronus stent from Scitech with 16 mm length). Nine series of experiments were performed where it was controlled parameters as: time of adsorption, stent temperature and magnetic fluid temperature. The stents coated with nanoparticles were magnetically characterized using a vibrating sample magnetometer (VSM), which allowed us to determine the number of nanoparticles at the stent surface. The increase of the magnetic moment of the stent with the increase of the adsorption time was theoretically modeled, with an excellent experimental agreement, as a transient diffusion process of nanoparticles at the interface stent-magnetic fluid, which clearly indicates an important diffusive contribution. Strong evidences of thermal diffusion (Soret effect), i.e. nanoparticle diffusion due to temperature gradient between the stent and the magnetic fluid, were shown, suggesting the possibility of nanostructures vectorization through thermal induced mechanisms. The spatial distribution of nanoparticles at the surface of the stent was investigated by Scanning Electron Microscopy (SEM) and X-ray Spectroscopy by Dispersive Energy (EDS). Measurements of the compositional mapping and images of SEM revealed that the nanoparticles are not homogeneously distributed, being concentrated at the edges of the stents for the experimental conditions investigated in this work. As the VSM data, the EDS of the stents revealed an increase of the quantity of adsorbed magnetic nanoparticles at the surface with the increase of the adsorption time. The same theoretical model, know considering the amount of 26Fe in the chemical composition of the coated stent, was able to explain the experimental data. Finally, a comparison was made, using the compositional mapping study of the coated stents, between the Dip Coating and the Spray technique. The later showed a more homogeneous distribution of nanoparticles at the surface of the stent, suggesting that this technique is more adequate on the development of a biomedical nanoproduct for clinical tests.Neste trabalho foi desenvolvida uma técnica de Dip Coating (deposição por via líquida) que permite controlar o gradiente de temperatura entre o substrato e o material que se quer depositar em sua superfície. Em particular, foi investigado o efeito de adsorção de nanopartículas magnéticas biocompatíveis na superfície de Stents nus em diversas condições experimentais. As nanopartículas magnéticas consistiam de magnetita recobertas com tripolifosfato (diâmetro médio ) dispersas em água em pH fisiológico, enquanto as endopróteses eram Stents de CoCr (Stent Cronus da empresa Scitech com 16mm). Ao todo foram realizadas 9 séries de experimentos onde controlou-se parâmetros como: tempo de adsorção, temperatura do Stent e temperatura do fluido magnético. Os Stents recobertos com nanopartículas foram então caracterizados magneticamente pela técnica de magnetometria de amostra vibrante (VSM Vibrating Sample Magnetometer ), que permitiu determinar o número de nanopartículas magnéticas adsorvidas na superfície da endoprótese. O aumento do momento magnético do Stent com o aumento do tempo de adsorção foi modelado teoricamente, com grande concordância experimental, como um processo de difusão transiente de nanopartículas na interface Stent-fluido magnético, evidenciando a forte contribuição difusiva. Fortes evidências de efeitos termodifusivos (efeito de Soret), ou seja mecanismos de difusão mássica de nanopartículas devido ao gradiente de temperatura entre Stent e FM, foram apresentados, sugerindo a possibilidade de vetorização de nanoestruturas por meio de fenômenos termoinduzidos. A distribuição das nanopartículas na superfície dos Stents foi investigada por medidas de Microscopia Eletrônica de Varredura (MEV) e espectroscopia de raios-X por energia dispersiva (EDS). As medidas de mapeamento composicional e imagens de MEV revelaram que as nanopartículas estão distribuídas de maneira não homogênea, estando concentradas nas bordas dos Stents para as condições experimentais utilizadas neste trabalho. Assim como os dados de MAV, o EDS dos Stents recobertos revelou um aumento da quantidade de nanopartículas magnéticas adsorvidas em sua superfície com o aumento do tempo de adsorção. O mesmo modelo teórico, agora considerando o percentual de 26Fe na composição química do revestimento, foi capaz de explicar os dados experimentais. Finalmente, foi feita uma comparação, por meio do mapeamento composicional de Stents recobertos, entre as técnicas de Dip Coating e Spray. Esta última apresentou uma distribuição de nanopartículas mais homogênea na superfície da endoprótese, sugerindo que possa ser mais adequada para a confecção de um nanoproduto médico voltado a testes clínicos.Made available in DSpace on 2014-07-29T15:07:09Z (GMT). No. of bitstreams: 1 Dissertacao Harley Fernandes Rodrigues.pdf: 5566711 bytes, checksum: 484423a034c8d6a3a3f34650b5036af1 (MD5) Previous issue date: 2011-08-23application/pdfhttp://repositorio.bc.ufg.br/TEDE/retrieve/3588/Dissertacao%20Harley%20Fernandes%20Rodrigues.pdf.jpgporUniversidade Federal de GoiásMestrado em FísicaUFGBRCiências Exatas e da TerraVetorizaçãotermodifusãonanopartículas mangéticasrecobrimentostentVectorizationThermodiffusionMagnetic NanoparticlesCoatingBare Metal StentCNPQ::CIENCIAS EXATAS E DA TERRA::FISICAVetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquidaThermally induced vectorization of Biocompatible Magnetic Nanoparticles: an application to cover Bare Metal Stents by Dip Coatinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALDissertacao Harley Fernandes Rodrigues.pdfapplication/pdf5566711http://repositorio.bc.ufg.br/tede/bitstreams/cdfb1de1-6402-455a-ac22-10d3f3ddc555/download484423a034c8d6a3a3f34650b5036af1MD51THUMBNAILDissertacao Harley Fernandes Rodrigues.pdf.jpgDissertacao Harley Fernandes Rodrigues.pdf.jpgGenerated Thumbnailimage/jpeg3046http://repositorio.bc.ufg.br/tede/bitstreams/bc0d7595-73c3-487d-bf4a-de24c42d90b7/download21e604ead4a8c667a55109df6d761865MD52tde/8132014-07-30 03:06:43.899open.accessoai:repositorio.bc.ufg.br:tde/813http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2014-07-30T06:06:43Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)false
dc.title.por.fl_str_mv Vetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquida
dc.title.alternative.eng.fl_str_mv Thermally induced vectorization of Biocompatible Magnetic Nanoparticles: an application to cover Bare Metal Stents by Dip Coating
title Vetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquida
spellingShingle Vetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquida
RODRIGUES, Harley Fernandes
Vetorização
termodifusão
nanopartículas mangéticas
recobrimento
stent
Vectorization
Thermodiffusion
Magnetic Nanoparticles
Coating
Bare Metal Stent
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
title_short Vetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquida
title_full Vetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquida
title_fullStr Vetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquida
title_full_unstemmed Vetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquida
title_sort Vetorização termoinduzida de nanopartículas magnéticas biocompatíveis: uma aplicação no recobrimento de Stents nus por via líquida
author RODRIGUES, Harley Fernandes
author_facet RODRIGUES, Harley Fernandes
author_role author
dc.contributor.advisor1.fl_str_mv BAKUZIS, Andris Figueiroa
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3477269475651042
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/8588659356537389
dc.contributor.author.fl_str_mv RODRIGUES, Harley Fernandes
contributor_str_mv BAKUZIS, Andris Figueiroa
dc.subject.por.fl_str_mv Vetorização
termodifusão
nanopartículas mangéticas
recobrimento
stent
topic Vetorização
termodifusão
nanopartículas mangéticas
recobrimento
stent
Vectorization
Thermodiffusion
Magnetic Nanoparticles
Coating
Bare Metal Stent
CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.eng.fl_str_mv Vectorization
Thermodiffusion
Magnetic Nanoparticles
Coating
Bare Metal Stent
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::FISICA
description In this work we developed a Dip Coating method that could control the temperature gradient between a substrate and the material that one wants to adsorb at its surface. In particular, the adsorption of biocompatible magnetic nanoparticles at the surface of bare metal Stents, under different experimental conditions, was investigated. The magnetic nanoparticles consisted of magnetite coated with tripoliphosphate (mean diameter 7.68 nm and standard deviation 1.88 nm) dispersed in water at physiological conditions, while the Stent was a CoCr based-one (Cronus stent from Scitech with 16 mm length). Nine series of experiments were performed where it was controlled parameters as: time of adsorption, stent temperature and magnetic fluid temperature. The stents coated with nanoparticles were magnetically characterized using a vibrating sample magnetometer (VSM), which allowed us to determine the number of nanoparticles at the stent surface. The increase of the magnetic moment of the stent with the increase of the adsorption time was theoretically modeled, with an excellent experimental agreement, as a transient diffusion process of nanoparticles at the interface stent-magnetic fluid, which clearly indicates an important diffusive contribution. Strong evidences of thermal diffusion (Soret effect), i.e. nanoparticle diffusion due to temperature gradient between the stent and the magnetic fluid, were shown, suggesting the possibility of nanostructures vectorization through thermal induced mechanisms. The spatial distribution of nanoparticles at the surface of the stent was investigated by Scanning Electron Microscopy (SEM) and X-ray Spectroscopy by Dispersive Energy (EDS). Measurements of the compositional mapping and images of SEM revealed that the nanoparticles are not homogeneously distributed, being concentrated at the edges of the stents for the experimental conditions investigated in this work. As the VSM data, the EDS of the stents revealed an increase of the quantity of adsorbed magnetic nanoparticles at the surface with the increase of the adsorption time. The same theoretical model, know considering the amount of 26Fe in the chemical composition of the coated stent, was able to explain the experimental data. Finally, a comparison was made, using the compositional mapping study of the coated stents, between the Dip Coating and the Spray technique. The later showed a more homogeneous distribution of nanoparticles at the surface of the stent, suggesting that this technique is more adequate on the development of a biomedical nanoproduct for clinical tests.
publishDate 2011
dc.date.issued.fl_str_mv 2011-08-23
dc.date.available.fl_str_mv 2012-03-30
dc.date.accessioned.fl_str_mv 2014-07-29T15:07:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv RODRIGUES, Harley Fernandes. Thermally induced vectorization of Biocompatible Magnetic Nanoparticles: an application to cover Bare Metal Stents by Dip Coating. 2011. 153 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Goiás, Goiânia, 2011.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tde/813
dc.identifier.dark.fl_str_mv ark:/38995/0013000001b39
identifier_str_mv RODRIGUES, Harley Fernandes. Thermally induced vectorization of Biocompatible Magnetic Nanoparticles: an application to cover Bare Metal Stents by Dip Coating. 2011. 153 f. Dissertação (Mestrado em Ciências Exatas e da Terra) - Universidade Federal de Goiás, Goiânia, 2011.
ark:/38995/0013000001b39
url http://repositorio.bc.ufg.br/tede/handle/tde/813
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Mestrado em Física
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv BR
dc.publisher.department.fl_str_mv Ciências Exatas e da Terra
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/cdfb1de1-6402-455a-ac22-10d3f3ddc555/download
http://repositorio.bc.ufg.br/tede/bitstreams/bc0d7595-73c3-487d-bf4a-de24c42d90b7/download
bitstream.checksum.fl_str_mv 484423a034c8d6a3a3f34650b5036af1
21e604ead4a8c667a55109df6d761865
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172523062460416