Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations

Detalhes bibliográficos
Autor(a) principal: Menezes, Tiago da Costa
Data de Publicação: 2021
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000dr94
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/11435
Resumo: In this work, we propose and analyze some methods to solve constrained optimization problems and constrained monotone nonlinear systems of equations. Our first algorithm is an inexact variable metric method for solving convex-constrained optimization problems. At each iteration of the method, the search direction is obtained by inexactly minimizing a strictly convex quadratic function over the closed convex feasible set. Here, we propose a new inexactness criterion for the search direction subproblems. Under mild assumptions, we prove that any accumulation point of the sequence generated by the method is a stationary point of the problem under consideration. Our second method consists of a Gauss-Newton algorithm with approximate projections for solving constrained nonlinear least squares problems. The local convergence of the method including results on its rate is discussed by using a general majorant condition. By combining the latter method and a nonmonotone line search strategy, we also propose a global version of this algorithm and analyze its convergence results. Our third approach corresponds to a framework, which is obtained by combining a safeguard strategy on the search directions with a notion of approximate projections, to solve constrained monotone nonlinear systems of equations. The global convergence of our framework is obtained under appropriate assumptions and some examples of methods which fall into this framework are presented. Numerical experiments illustrating the practical behaviors of the methods are reported and comparisons with existing algorithms are also presented.
id UFG-2_7a46476b02b93aad75790862f8be8f29
oai_identifier_str oai:repositorio.bc.ufg.br:tede/11435
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Gonçalves, Max Leandro Nobrehttp://lattes.cnpq.br/7841103869154032Gonçalves, Max Leandro NobreFerreira, Orizon PereiraSantos, Paulo Sergio Marques dosGonçalves, Douglas SoaresSantos, Sandra Augustahttp://lattes.cnpq.br/3488753474548145Menezes, Tiago da Costa2021-06-15T18:18:58Z2021-06-15T18:18:58Z2021-05-20MENEZES, T. C. Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations. 2021. 72 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11435ark:/38995/001300000dr94In this work, we propose and analyze some methods to solve constrained optimization problems and constrained monotone nonlinear systems of equations. Our first algorithm is an inexact variable metric method for solving convex-constrained optimization problems. At each iteration of the method, the search direction is obtained by inexactly minimizing a strictly convex quadratic function over the closed convex feasible set. Here, we propose a new inexactness criterion for the search direction subproblems. Under mild assumptions, we prove that any accumulation point of the sequence generated by the method is a stationary point of the problem under consideration. Our second method consists of a Gauss-Newton algorithm with approximate projections for solving constrained nonlinear least squares problems. The local convergence of the method including results on its rate is discussed by using a general majorant condition. By combining the latter method and a nonmonotone line search strategy, we also propose a global version of this algorithm and analyze its convergence results. Our third approach corresponds to a framework, which is obtained by combining a safeguard strategy on the search directions with a notion of approximate projections, to solve constrained monotone nonlinear systems of equations. The global convergence of our framework is obtained under appropriate assumptions and some examples of methods which fall into this framework are presented. Numerical experiments illustrating the practical behaviors of the methods are reported and comparisons with existing algorithms are also presented.Neste trabalho, propomos e analisamos alguns métodos para resolver proble-mas de otimização com restrições e sistemas de equações não lineares monó-tonas com restrições. Nosso primeiro algoritmo é um método inexato de métrica variável para resolver problemas de otimização com restrições convexas. A cada iteração deste método, a busca direcional é obtida minimizando inexatamente uma função quadrática estritamente convexa sobre o conjunto convexo fechado viável. Aqui, propusemos um novo critério de inexatidão para os subproblemas de busca direcional. Sob suposições apropriadas, provamos que qualquer ponto de acumulação da sequência gerada pelo novo método é um ponto estacionário do problema sob consideração. Nosso segundo método consiste em um método Gauss-Newton com projeções aproximadas para resolver problemas de quadra-dos mínimos não lineares com restrições. A convergência local do método, in-cluindo resultados sobre sua taxa de convergência, é discutida usando uma condição majorante geral. Ao combinar o último método e uma estratégia de busca linear não monótona, também propusemos uma versão global deste al-goritmo e analisamos seus resultados de convergência. Nossa terceira aborda-gem corresponde a um “framework”, o qual é obtido combinando uma estraté-gia de salvaguarda na busca direcional com uma noção de projeções aproxima-das, para resolver sistemas de equações não lineares monótonas com restri-ções. A convergência global de nosso “framework” é obtida sob suposições apropriadas e alguns exemplos de métodos que se enquadram nesta estrutura são apresentados. Experimentos numéricos são relatados para ilustrar os desempenhos dos métodos e comparações com algoritmos existentes também são apresentadas.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2021-06-14T14:49:56Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Tiago da Costa Menezes - 2021.pdf: 1043758 bytes, checksum: 87c17601007020a792ccce531e32166b (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-06-15T18:18:58Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Tiago da Costa Menezes - 2021.pdf: 1043758 bytes, checksum: 87c17601007020a792ccce531e32166b (MD5)Made available in DSpace on 2021-06-15T18:18:58Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Tiago da Costa Menezes - 2021.pdf: 1043758 bytes, checksum: 87c17601007020a792ccce531e32166b (MD5) Previous issue date: 2021-05-20Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessConvex-constrained optimization problemNonlinear equationsApproximate projectionsInexact variable metric methodGauss-Newton methodLocal and global convergenceProblema de otimização com restrição convexaEquações não linearesProjeções aproximadasMétodo inexato de métrica variáveMétodo de Gauss-NewtonConvergência local e globalCIENCIAS EXATAS E DA TERRA::MATEMATICAInexact methods for constrained optimization problems and for constrained monotone nonlinear equationsMétodos inexatos para problemas de otimização com restrições e para equações não lineares monótonas com restriçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis68500500500500271871reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/e5ca287b-8c4d-46b6-9aec-27384ed8d7a8/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALTese - Tiago da Costa Menezes - 2021.pdfTese - Tiago da Costa Menezes - 2021.pdfapplication/pdf1043758http://repositorio.bc.ufg.br/tede/bitstreams/e75911ec-822c-4d53-abf1-570a0d490347/download87c17601007020a792ccce531e32166bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/e14cd05d-0e41-4b81-9322-a58e97267835/download8a4605be74aa9ea9d79846c1fba20a33MD51tede/114352021-06-15 15:18:58.743http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11435http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-06-15T18:18:58Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations
dc.title.alternative.por.fl_str_mv Métodos inexatos para problemas de otimização com restrições e para equações não lineares monótonas com restrições
title Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations
spellingShingle Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations
Menezes, Tiago da Costa
Convex-constrained optimization problem
Nonlinear equations
Approximate projections
Inexact variable metric method
Gauss-Newton method
Local and global convergence
Problema de otimização com restrição convexa
Equações não lineares
Projeções aproximadas
Método inexato de métrica variáve
Método de Gauss-Newton
Convergência local e global
CIENCIAS EXATAS E DA TERRA::MATEMATICA
title_short Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations
title_full Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations
title_fullStr Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations
title_full_unstemmed Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations
title_sort Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations
author Menezes, Tiago da Costa
author_facet Menezes, Tiago da Costa
author_role author
dc.contributor.advisor1.fl_str_mv Gonçalves, Max Leandro Nobre
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/7841103869154032
dc.contributor.referee1.fl_str_mv Gonçalves, Max Leandro Nobre
dc.contributor.referee2.fl_str_mv Ferreira, Orizon Pereira
dc.contributor.referee3.fl_str_mv Santos, Paulo Sergio Marques dos
dc.contributor.referee4.fl_str_mv Gonçalves, Douglas Soares
dc.contributor.referee5.fl_str_mv Santos, Sandra Augusta
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3488753474548145
dc.contributor.author.fl_str_mv Menezes, Tiago da Costa
contributor_str_mv Gonçalves, Max Leandro Nobre
Gonçalves, Max Leandro Nobre
Ferreira, Orizon Pereira
Santos, Paulo Sergio Marques dos
Gonçalves, Douglas Soares
Santos, Sandra Augusta
dc.subject.eng.fl_str_mv Convex-constrained optimization problem
Nonlinear equations
Approximate projections
Inexact variable metric method
Gauss-Newton method
Local and global convergence
topic Convex-constrained optimization problem
Nonlinear equations
Approximate projections
Inexact variable metric method
Gauss-Newton method
Local and global convergence
Problema de otimização com restrição convexa
Equações não lineares
Projeções aproximadas
Método inexato de métrica variáve
Método de Gauss-Newton
Convergência local e global
CIENCIAS EXATAS E DA TERRA::MATEMATICA
dc.subject.por.fl_str_mv Problema de otimização com restrição convexa
Equações não lineares
Projeções aproximadas
Método inexato de métrica variáve
Método de Gauss-Newton
Convergência local e global
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::MATEMATICA
description In this work, we propose and analyze some methods to solve constrained optimization problems and constrained monotone nonlinear systems of equations. Our first algorithm is an inexact variable metric method for solving convex-constrained optimization problems. At each iteration of the method, the search direction is obtained by inexactly minimizing a strictly convex quadratic function over the closed convex feasible set. Here, we propose a new inexactness criterion for the search direction subproblems. Under mild assumptions, we prove that any accumulation point of the sequence generated by the method is a stationary point of the problem under consideration. Our second method consists of a Gauss-Newton algorithm with approximate projections for solving constrained nonlinear least squares problems. The local convergence of the method including results on its rate is discussed by using a general majorant condition. By combining the latter method and a nonmonotone line search strategy, we also propose a global version of this algorithm and analyze its convergence results. Our third approach corresponds to a framework, which is obtained by combining a safeguard strategy on the search directions with a notion of approximate projections, to solve constrained monotone nonlinear systems of equations. The global convergence of our framework is obtained under appropriate assumptions and some examples of methods which fall into this framework are presented. Numerical experiments illustrating the practical behaviors of the methods are reported and comparisons with existing algorithms are also presented.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-06-15T18:18:58Z
dc.date.available.fl_str_mv 2021-06-15T18:18:58Z
dc.date.issued.fl_str_mv 2021-05-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MENEZES, T. C. Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations. 2021. 72 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/11435
dc.identifier.dark.fl_str_mv ark:/38995/001300000dr94
identifier_str_mv MENEZES, T. C. Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations. 2021. 72 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021.
ark:/38995/001300000dr94
url http://repositorio.bc.ufg.br/tede/handle/tede/11435
dc.language.iso.fl_str_mv eng
language eng
dc.relation.program.fl_str_mv 68
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 27
dc.relation.cnpq.fl_str_mv 187
dc.relation.sponsorship.fl_str_mv 1
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/e5ca287b-8c4d-46b6-9aec-27384ed8d7a8/download
http://repositorio.bc.ufg.br/tede/bitstreams/e75911ec-822c-4d53-abf1-570a0d490347/download
http://repositorio.bc.ufg.br/tede/bitstreams/e14cd05d-0e41-4b81-9322-a58e97267835/download
bitstream.checksum.fl_str_mv 4460e5956bc1d1639be9ae6146a50347
87c17601007020a792ccce531e32166b
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172645747949568