Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Tese |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000dr94 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/11435 |
Resumo: | In this work, we propose and analyze some methods to solve constrained optimization problems and constrained monotone nonlinear systems of equations. Our first algorithm is an inexact variable metric method for solving convex-constrained optimization problems. At each iteration of the method, the search direction is obtained by inexactly minimizing a strictly convex quadratic function over the closed convex feasible set. Here, we propose a new inexactness criterion for the search direction subproblems. Under mild assumptions, we prove that any accumulation point of the sequence generated by the method is a stationary point of the problem under consideration. Our second method consists of a Gauss-Newton algorithm with approximate projections for solving constrained nonlinear least squares problems. The local convergence of the method including results on its rate is discussed by using a general majorant condition. By combining the latter method and a nonmonotone line search strategy, we also propose a global version of this algorithm and analyze its convergence results. Our third approach corresponds to a framework, which is obtained by combining a safeguard strategy on the search directions with a notion of approximate projections, to solve constrained monotone nonlinear systems of equations. The global convergence of our framework is obtained under appropriate assumptions and some examples of methods which fall into this framework are presented. Numerical experiments illustrating the practical behaviors of the methods are reported and comparisons with existing algorithms are also presented. |
id |
UFG-2_7a46476b02b93aad75790862f8be8f29 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/11435 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Gonçalves, Max Leandro Nobrehttp://lattes.cnpq.br/7841103869154032Gonçalves, Max Leandro NobreFerreira, Orizon PereiraSantos, Paulo Sergio Marques dosGonçalves, Douglas SoaresSantos, Sandra Augustahttp://lattes.cnpq.br/3488753474548145Menezes, Tiago da Costa2021-06-15T18:18:58Z2021-06-15T18:18:58Z2021-05-20MENEZES, T. C. Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations. 2021. 72 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11435ark:/38995/001300000dr94In this work, we propose and analyze some methods to solve constrained optimization problems and constrained monotone nonlinear systems of equations. Our first algorithm is an inexact variable metric method for solving convex-constrained optimization problems. At each iteration of the method, the search direction is obtained by inexactly minimizing a strictly convex quadratic function over the closed convex feasible set. Here, we propose a new inexactness criterion for the search direction subproblems. Under mild assumptions, we prove that any accumulation point of the sequence generated by the method is a stationary point of the problem under consideration. Our second method consists of a Gauss-Newton algorithm with approximate projections for solving constrained nonlinear least squares problems. The local convergence of the method including results on its rate is discussed by using a general majorant condition. By combining the latter method and a nonmonotone line search strategy, we also propose a global version of this algorithm and analyze its convergence results. Our third approach corresponds to a framework, which is obtained by combining a safeguard strategy on the search directions with a notion of approximate projections, to solve constrained monotone nonlinear systems of equations. The global convergence of our framework is obtained under appropriate assumptions and some examples of methods which fall into this framework are presented. Numerical experiments illustrating the practical behaviors of the methods are reported and comparisons with existing algorithms are also presented.Neste trabalho, propomos e analisamos alguns métodos para resolver proble-mas de otimização com restrições e sistemas de equações não lineares monó-tonas com restrições. Nosso primeiro algoritmo é um método inexato de métrica variável para resolver problemas de otimização com restrições convexas. A cada iteração deste método, a busca direcional é obtida minimizando inexatamente uma função quadrática estritamente convexa sobre o conjunto convexo fechado viável. Aqui, propusemos um novo critério de inexatidão para os subproblemas de busca direcional. Sob suposições apropriadas, provamos que qualquer ponto de acumulação da sequência gerada pelo novo método é um ponto estacionário do problema sob consideração. Nosso segundo método consiste em um método Gauss-Newton com projeções aproximadas para resolver problemas de quadra-dos mínimos não lineares com restrições. A convergência local do método, in-cluindo resultados sobre sua taxa de convergência, é discutida usando uma condição majorante geral. Ao combinar o último método e uma estratégia de busca linear não monótona, também propusemos uma versão global deste al-goritmo e analisamos seus resultados de convergência. Nossa terceira aborda-gem corresponde a um “framework”, o qual é obtido combinando uma estraté-gia de salvaguarda na busca direcional com uma noção de projeções aproxima-das, para resolver sistemas de equações não lineares monótonas com restri-ções. A convergência global de nosso “framework” é obtida sob suposições apropriadas e alguns exemplos de métodos que se enquadram nesta estrutura são apresentados. Experimentos numéricos são relatados para ilustrar os desempenhos dos métodos e comparações com algoritmos existentes também são apresentadas.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2021-06-14T14:49:56Z No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Tiago da Costa Menezes - 2021.pdf: 1043758 bytes, checksum: 87c17601007020a792ccce531e32166b (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-06-15T18:18:58Z (GMT) No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Tiago da Costa Menezes - 2021.pdf: 1043758 bytes, checksum: 87c17601007020a792ccce531e32166b (MD5)Made available in DSpace on 2021-06-15T18:18:58Z (GMT). No. of bitstreams: 2 license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Tese - Tiago da Costa Menezes - 2021.pdf: 1043758 bytes, checksum: 87c17601007020a792ccce531e32166b (MD5) Previous issue date: 2021-05-20Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessConvex-constrained optimization problemNonlinear equationsApproximate projectionsInexact variable metric methodGauss-Newton methodLocal and global convergenceProblema de otimização com restrição convexaEquações não linearesProjeções aproximadasMétodo inexato de métrica variáveMétodo de Gauss-NewtonConvergência local e globalCIENCIAS EXATAS E DA TERRA::MATEMATICAInexact methods for constrained optimization problems and for constrained monotone nonlinear equationsMétodos inexatos para problemas de otimização com restrições e para equações não lineares monótonas com restriçõesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis68500500500500271871reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/e5ca287b-8c4d-46b6-9aec-27384ed8d7a8/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALTese - Tiago da Costa Menezes - 2021.pdfTese - Tiago da Costa Menezes - 2021.pdfapplication/pdf1043758http://repositorio.bc.ufg.br/tede/bitstreams/e75911ec-822c-4d53-abf1-570a0d490347/download87c17601007020a792ccce531e32166bMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/e14cd05d-0e41-4b81-9322-a58e97267835/download8a4605be74aa9ea9d79846c1fba20a33MD51tede/114352021-06-15 15:18:58.743http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11435http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-06-15T18:18:58Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations |
dc.title.alternative.por.fl_str_mv |
Métodos inexatos para problemas de otimização com restrições e para equações não lineares monótonas com restrições |
title |
Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations |
spellingShingle |
Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations Menezes, Tiago da Costa Convex-constrained optimization problem Nonlinear equations Approximate projections Inexact variable metric method Gauss-Newton method Local and global convergence Problema de otimização com restrição convexa Equações não lineares Projeções aproximadas Método inexato de métrica variáve Método de Gauss-Newton Convergência local e global CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations |
title_full |
Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations |
title_fullStr |
Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations |
title_full_unstemmed |
Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations |
title_sort |
Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations |
author |
Menezes, Tiago da Costa |
author_facet |
Menezes, Tiago da Costa |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Gonçalves, Max Leandro Nobre |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/7841103869154032 |
dc.contributor.referee1.fl_str_mv |
Gonçalves, Max Leandro Nobre |
dc.contributor.referee2.fl_str_mv |
Ferreira, Orizon Pereira |
dc.contributor.referee3.fl_str_mv |
Santos, Paulo Sergio Marques dos |
dc.contributor.referee4.fl_str_mv |
Gonçalves, Douglas Soares |
dc.contributor.referee5.fl_str_mv |
Santos, Sandra Augusta |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3488753474548145 |
dc.contributor.author.fl_str_mv |
Menezes, Tiago da Costa |
contributor_str_mv |
Gonçalves, Max Leandro Nobre Gonçalves, Max Leandro Nobre Ferreira, Orizon Pereira Santos, Paulo Sergio Marques dos Gonçalves, Douglas Soares Santos, Sandra Augusta |
dc.subject.eng.fl_str_mv |
Convex-constrained optimization problem Nonlinear equations Approximate projections Inexact variable metric method Gauss-Newton method Local and global convergence |
topic |
Convex-constrained optimization problem Nonlinear equations Approximate projections Inexact variable metric method Gauss-Newton method Local and global convergence Problema de otimização com restrição convexa Equações não lineares Projeções aproximadas Método inexato de métrica variáve Método de Gauss-Newton Convergência local e global CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.por.fl_str_mv |
Problema de otimização com restrição convexa Equações não lineares Projeções aproximadas Método inexato de métrica variáve Método de Gauss-Newton Convergência local e global |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work, we propose and analyze some methods to solve constrained optimization problems and constrained monotone nonlinear systems of equations. Our first algorithm is an inexact variable metric method for solving convex-constrained optimization problems. At each iteration of the method, the search direction is obtained by inexactly minimizing a strictly convex quadratic function over the closed convex feasible set. Here, we propose a new inexactness criterion for the search direction subproblems. Under mild assumptions, we prove that any accumulation point of the sequence generated by the method is a stationary point of the problem under consideration. Our second method consists of a Gauss-Newton algorithm with approximate projections for solving constrained nonlinear least squares problems. The local convergence of the method including results on its rate is discussed by using a general majorant condition. By combining the latter method and a nonmonotone line search strategy, we also propose a global version of this algorithm and analyze its convergence results. Our third approach corresponds to a framework, which is obtained by combining a safeguard strategy on the search directions with a notion of approximate projections, to solve constrained monotone nonlinear systems of equations. The global convergence of our framework is obtained under appropriate assumptions and some examples of methods which fall into this framework are presented. Numerical experiments illustrating the practical behaviors of the methods are reported and comparisons with existing algorithms are also presented. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-06-15T18:18:58Z |
dc.date.available.fl_str_mv |
2021-06-15T18:18:58Z |
dc.date.issued.fl_str_mv |
2021-05-20 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MENEZES, T. C. Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations. 2021. 72 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/11435 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000dr94 |
identifier_str_mv |
MENEZES, T. C. Inexact methods for constrained optimization problems and for constrained monotone nonlinear equations. 2021. 72 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2021. ark:/38995/001300000dr94 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/11435 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.program.fl_str_mv |
68 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 |
dc.relation.department.fl_str_mv |
27 |
dc.relation.cnpq.fl_str_mv |
187 |
dc.relation.sponsorship.fl_str_mv |
1 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/e5ca287b-8c4d-46b6-9aec-27384ed8d7a8/download http://repositorio.bc.ufg.br/tede/bitstreams/e75911ec-822c-4d53-abf1-570a0d490347/download http://repositorio.bc.ufg.br/tede/bitstreams/e14cd05d-0e41-4b81-9322-a58e97267835/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 87c17601007020a792ccce531e32166b 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172645747949568 |