Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm)

Detalhes bibliográficos
Autor(a) principal: Couto, Rafael Carvalho
Data de Publicação: 2013
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000chz8
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/7512
Resumo: This work focuses on the development of the software MGA, which aims to determine the lowest energy structures of a given molecular system, using Genetic Algorithm (GA). The GA is a method of artificial intelligence that was developed to work with finding the best solutions of the specified conditions, ie, an algorithm that seeks the best answer desired, an optimal result. The MGA uses three techniques: Random Search (RS), Noninclusive Genetic Algorithm (NGA), Inclusive Genetic Algorithm (IGA). The last one is characterized by a new type of evolutionary strategy that allows in a single calculation and a single cycle, obtain several minimum of the potential energy surface. For optimum operation of the algorithm, was made an optimization of the parameters used in MGA, through response surface methodology. Using the techniques RS, IGA and NGA, were determined 141 distinct molecular structures of the amino acid asparagine. In the electronic structure calculations were considered the semi-empirical methods PM3, AM1 and RM1; and DFT potentials, with basis sets 6-311G ** and PC1. The RS determined the Global Minimum (GM) with ease, for the different potentials used, and proved that it’s quite useful in determining molecular geometries where there is no accuracy in the determination of local minima in order of energy. The NGA is efficient in determining the GM, performing in a shorter time, if compared to RS and IGA. The IGA proved to be a more robust method than the others, because in addition to determining the GM, it can find the local minima in order of energy. Performing calculations on an intermediate time of RS and NGA, the IGA determined the GM as the NGA, and found structures that were not founded using RS. The GM’s of asparagine determined using the potentials PC1, PM3, AM1 and RM1 have a large structural difference. This demonstrates that different potencials used in the electronic structure calculations may lead to different results. By analyzing the structures obtained for potentials PC1, PM3, AM1 and RM1, using the IGA, it appears that there is a difference in the topology of the potential energy surface of these potentials.
id UFG-2_82868411f1e84e9548e03b4768fdeca6
oai_identifier_str oai:repositorio.bc.ufg.br:tede/7512
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Guimarães, Freddy Fernandeshttp://lattes.cnpq.br/6780812627526129Guimarães, Freddy Fernandeshttp://lattes.cnpq.br/6780812627526129Neves, Jorge LuizMartins, Felipe Terrahttp://lattes.cnpq.br/6196634849515906Couto, Rafael Carvalho2017-07-07T20:26:10Z2013-04-15COUTO, R. C. Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm). 2013. 98 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2013.http://repositorio.bc.ufg.br/tede/handle/tede/7512ark:/38995/001300000chz8This work focuses on the development of the software MGA, which aims to determine the lowest energy structures of a given molecular system, using Genetic Algorithm (GA). The GA is a method of artificial intelligence that was developed to work with finding the best solutions of the specified conditions, ie, an algorithm that seeks the best answer desired, an optimal result. The MGA uses three techniques: Random Search (RS), Noninclusive Genetic Algorithm (NGA), Inclusive Genetic Algorithm (IGA). The last one is characterized by a new type of evolutionary strategy that allows in a single calculation and a single cycle, obtain several minimum of the potential energy surface. For optimum operation of the algorithm, was made an optimization of the parameters used in MGA, through response surface methodology. Using the techniques RS, IGA and NGA, were determined 141 distinct molecular structures of the amino acid asparagine. In the electronic structure calculations were considered the semi-empirical methods PM3, AM1 and RM1; and DFT potentials, with basis sets 6-311G ** and PC1. The RS determined the Global Minimum (GM) with ease, for the different potentials used, and proved that it’s quite useful in determining molecular geometries where there is no accuracy in the determination of local minima in order of energy. The NGA is efficient in determining the GM, performing in a shorter time, if compared to RS and IGA. The IGA proved to be a more robust method than the others, because in addition to determining the GM, it can find the local minima in order of energy. Performing calculations on an intermediate time of RS and NGA, the IGA determined the GM as the NGA, and found structures that were not founded using RS. The GM’s of asparagine determined using the potentials PC1, PM3, AM1 and RM1 have a large structural difference. This demonstrates that different potencials used in the electronic structure calculations may lead to different results. By analyzing the structures obtained for potentials PC1, PM3, AM1 and RM1, using the IGA, it appears that there is a difference in the topology of the potential energy surface of these potentials.O presente trabalho é focado no desenvolvimento do software MGA, que tem como objetivo a determinação das estruturas de menor energia de um dado sistema molecular, utilizando o Algoritmo Genético (AG). O AG é um método de inteligência artificial que foi desenvolvido para trabalhar com a procura de soluções que melhor atendam as condições especificadas, isto é, um algoritmo que procura a melhor resposta desejada, um resultado ótimo. O MGA utiliza três técnicas: Busca Aleatória (RS), Algoritmo Genético Não-inclusivo (NGA), Algoritmo Genético Inclusivo (IGA). Este último é caracterizado por um novo tipo de estratégia evolutiva que permite em um único cálculo e um único ciclo evolucionário obter diversos mínimos da superfície de energia potencial. Para o melhor funcionamento do algoritmo, foi feita uma otimização dos parâmetros utilizados do MGA, através da metodologia de superfície de resposta. Utilizando as técnicas RS, NGA e IGA, foram determinadas 141 estruturas moleculares distintas do aminoácido asparagina. Nos cálculos de estrutura eletrônica foram considerados os métodos semi-empíricos PM3, AM1 e RM1; e potenciais DFT, com os conjuntos de base 6-311G** e PC1. O RS determinou o Mínimo Global (GM) com facilidade, para os diferentes potenciais utilizados, e se mostrou bastante útil na determinação de geometrias moleculares onde não há um rigor na determinação de mínimos locais em ordem de energia. O NGA é eficiente na determinaçãoao do GM, realizando em um menor tempo, se comparado ao RS e IGA. O IGA mostrou-se um método mais robusto que os outros, pois além de determinar o GM é possível encontrar os mínimos locais em ordem de energia. Realizando cálculos em um tempo intermediário ao RS e NGA, o IGA determinou o GM assim como o NGA, e encontrou estruturas que não foram possíveis utilizando o RS. Os GM’s da asparagina determinados utilizando os potenciais PC1, PM3, AM1 e RM1 possuem uma grande diferença estrutural. Isto demonstra que diferentes potencias utilizados nos cálculos de estrutura eletrônica podem levar a diferentes resultados. Ao analisarmos as estruturas obtidas para os potenciais PC1, PM3, AM1 e RM1, utilizando o IGA, constata-se que há uma diferença na topologia de suas superfícies de energia potencial.Submitted by JÚLIO HEBER SILVA (julioheber@yahoo.com.br) on 2017-06-26T18:28:31Z No. of bitstreams: 2 Dissertação - Rafael Carvalho Couto - 2013.pdf: 41193945 bytes, checksum: 74a020dad23640afb84a085b841b91aa (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Cláudia Bueno (claudiamoura18@gmail.com) on 2017-07-07T20:26:09Z (GMT) No. of bitstreams: 2 Dissertação - Rafael Carvalho Couto - 2013.pdf: 41193945 bytes, checksum: 74a020dad23640afb84a085b841b91aa (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-07-07T20:26:10Z (GMT). No. of bitstreams: 2 Dissertação - Rafael Carvalho Couto - 2013.pdf: 41193945 bytes, checksum: 74a020dad23640afb84a085b841b91aa (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2013-04-15application/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Química (IQ)UFGBrasilInstituto de Química - IQ (RG)Embargada pelo autor/orientador em 22/07/2013. Autorizado o povoamento pelo autor/orientador em 22/06/2017.66369392132541515860060060078260667437411972781571700325303117195http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAlgoritmo genéticoConfôrmerosMínimo globalMínimos locaisAsparaginaGenetic algorithmConformersGlobal minimumLocal minimaAsparagineCIENCIAS EXATAS E DA TERRA::QUIMICADesenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm)Development and aplication of MGA software (Molecular Genetic Algorithm)info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/5c0bda5c-3155-48c0-9aa9-5d9d1ba0b006/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/74b2a5cd-004e-4404-89d6-e056b4b649f1/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/7ee452c3-df70-4d7a-b81c-b4ba8fe5ef2d/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/d0d34bc9-51e9-4f1b-925b-fa9d70aacb62/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Rafael Carvalho Couto - 2013.pdfDissertação - Rafael Carvalho Couto - 2013.pdfapplication/pdf41193945http://repositorio.bc.ufg.br/tede/bitstreams/b8245cde-8e47-4025-87b4-2db928bb7ebe/download74a020dad23640afb84a085b841b91aaMD55tede/75122017-07-07 17:26:10.039http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/7512http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-07-07T20:26:10Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm)
dc.title.alternative.eng.fl_str_mv Development and aplication of MGA software (Molecular Genetic Algorithm)
title Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm)
spellingShingle Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm)
Couto, Rafael Carvalho
Algoritmo genético
Confôrmeros
Mínimo global
Mínimos locais
Asparagina
Genetic algorithm
Conformers
Global minimum
Local minima
Asparagine
CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm)
title_full Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm)
title_fullStr Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm)
title_full_unstemmed Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm)
title_sort Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm)
author Couto, Rafael Carvalho
author_facet Couto, Rafael Carvalho
author_role author
dc.contributor.advisor1.fl_str_mv Guimarães, Freddy Fernandes
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6780812627526129
dc.contributor.referee1.fl_str_mv Guimarães, Freddy Fernandes
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/6780812627526129
dc.contributor.referee2.fl_str_mv Neves, Jorge Luiz
dc.contributor.referee3.fl_str_mv Martins, Felipe Terra
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6196634849515906
dc.contributor.author.fl_str_mv Couto, Rafael Carvalho
contributor_str_mv Guimarães, Freddy Fernandes
Guimarães, Freddy Fernandes
Neves, Jorge Luiz
Martins, Felipe Terra
dc.subject.por.fl_str_mv Algoritmo genético
Confôrmeros
Mínimo global
Mínimos locais
Asparagina
topic Algoritmo genético
Confôrmeros
Mínimo global
Mínimos locais
Asparagina
Genetic algorithm
Conformers
Global minimum
Local minima
Asparagine
CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.eng.fl_str_mv Genetic algorithm
Conformers
Global minimum
Local minima
Asparagine
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
description This work focuses on the development of the software MGA, which aims to determine the lowest energy structures of a given molecular system, using Genetic Algorithm (GA). The GA is a method of artificial intelligence that was developed to work with finding the best solutions of the specified conditions, ie, an algorithm that seeks the best answer desired, an optimal result. The MGA uses three techniques: Random Search (RS), Noninclusive Genetic Algorithm (NGA), Inclusive Genetic Algorithm (IGA). The last one is characterized by a new type of evolutionary strategy that allows in a single calculation and a single cycle, obtain several minimum of the potential energy surface. For optimum operation of the algorithm, was made an optimization of the parameters used in MGA, through response surface methodology. Using the techniques RS, IGA and NGA, were determined 141 distinct molecular structures of the amino acid asparagine. In the electronic structure calculations were considered the semi-empirical methods PM3, AM1 and RM1; and DFT potentials, with basis sets 6-311G ** and PC1. The RS determined the Global Minimum (GM) with ease, for the different potentials used, and proved that it’s quite useful in determining molecular geometries where there is no accuracy in the determination of local minima in order of energy. The NGA is efficient in determining the GM, performing in a shorter time, if compared to RS and IGA. The IGA proved to be a more robust method than the others, because in addition to determining the GM, it can find the local minima in order of energy. Performing calculations on an intermediate time of RS and NGA, the IGA determined the GM as the NGA, and found structures that were not founded using RS. The GM’s of asparagine determined using the potentials PC1, PM3, AM1 and RM1 have a large structural difference. This demonstrates that different potencials used in the electronic structure calculations may lead to different results. By analyzing the structures obtained for potentials PC1, PM3, AM1 and RM1, using the IGA, it appears that there is a difference in the topology of the potential energy surface of these potentials.
publishDate 2013
dc.date.issued.fl_str_mv 2013-04-15
dc.date.accessioned.fl_str_mv 2017-07-07T20:26:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv COUTO, R. C. Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm). 2013. 98 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2013.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/7512
dc.identifier.dark.fl_str_mv ark:/38995/001300000chz8
identifier_str_mv COUTO, R. C. Desenvolvimento e aplicação do software MGA (Molecular Genetic Algorithm). 2013. 98 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2013.
ark:/38995/001300000chz8
url http://repositorio.bc.ufg.br/tede/handle/tede/7512
dc.language.iso.fl_str_mv por
language por
dc.relation.eng.fl_str_mv Embargada pelo autor/orientador em 22/07/2013. Autorizado o povoamento pelo autor/orientador em 22/06/2017.
dc.relation.program.fl_str_mv 663693921325415158
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.department.fl_str_mv 7826066743741197278
dc.relation.cnpq.fl_str_mv 1571700325303117195
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Química (IQ)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Química - IQ (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/5c0bda5c-3155-48c0-9aa9-5d9d1ba0b006/download
http://repositorio.bc.ufg.br/tede/bitstreams/74b2a5cd-004e-4404-89d6-e056b4b649f1/download
http://repositorio.bc.ufg.br/tede/bitstreams/7ee452c3-df70-4d7a-b81c-b4ba8fe5ef2d/download
http://repositorio.bc.ufg.br/tede/bitstreams/d0d34bc9-51e9-4f1b-925b-fa9d70aacb62/download
http://repositorio.bc.ufg.br/tede/bitstreams/b8245cde-8e47-4025-87b4-2db928bb7ebe/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
74a020dad23640afb84a085b841b91aa
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1813816964635688960