Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual

Detalhes bibliográficos
Autor(a) principal: Zimmer, Thiago Ruiz
Data de Publicação: 2020
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000007vg7
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/10703
Resumo: This work consisted of studying the use of residual orange pomace from the juice processing industry as an adsorbent for the removal of methomyl, an extremely toxic carbamate pesticide, prepared in the laboratory as a synthetic aqueous solution to simulate the washing effluent of equipment used in activities spraying. Initially, the biosorbent biomass was subjected to surface characterization by means of scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). From the images obtained by SEM it was possible to observe many irregularities on the surface of the adsorbent particles, however it was not possible to visualize macro or micro pores, denoting little porous particles. The study of the spectrograms obtained by FTIR revealed the presence of hydroxyl, carbonyl and carboxylic groups on the surface of the adsorbent particles. The biosorption tests were carried out in three stages. The first stage consisted of batch tests. The kinetics, the isotherm and the effects of pH and solid/liquid ratio (R) were evaluated, using the Central Rotational Composite Design 22 (DCCR 22), on the adsorption capacity of metomil in orange pomace particles (q). The second stage consisted of biosorption tests in pilot columns of 1 cm in diameter and fixed bed of orange bagasse of 30 cm, operated in continuous upward flow. In this step, the effects of flow (1, 5 and 10 mL) and the initial concentration of the affluent solution (20 and 50 mg.L−1) on the process were evaluated. Finally, the third step consisted of scaling up the biosorption column. Two systems were evaluated, System 1, consisting of two tubes 100 mm in diameter, one bed of 50 cm high orange pomace followed by a bed of foam 100 cm high, and System 2, consisting of three tubes 100 mm in diameter, being a bed of “gravel 2” 100 cm high, followed by a bed of orange pomace 100 cm high, followed by per 100 cm high foam bed, both operated in continuous upward flow. During the operation of System 1, elementary analysis was performed by fluorescence spectroscopy with total X-ray reflection (TXRF), of samples of affluent and effluent solutions, in order to qualitatively and quantitatively assess which elements had the greatest influence on the biosorption process of metomil in orange pomace. In batch tests, a better fit was obtained for the pseudo-second order kinetic model (R2 = 0.949), concluding that the chemisorption was the controlling step of the process. The Langmuir isotherm model fitted better to the experimental data (R2 = 0.989) confirming the adsorption in monolayers, without interaction between the adsorbate molecules. The statistical study of the effects of pH and the solid/liquid ratio (R) on the adsorption capacity of methomyl in the orange pomace particles resulted in higher values of adsorption capacity (q = 3.73 and q = 3.43 mg.g−1), obtained at pH 6.0 and 4.5 with R values equal to 0.017 and 0.015 (g.mL−1), respectively. Thus, it was concluded that there was greater adsorption in tests containing a greater mass of adsorbent at slightly acidic pH. The study of the effects of the flow and the initial concentration on the biosorption of methomel in orange pomace carried out in the columns on a pilot scale demonstrated that the increase in flow increased the mass transfer rate and, consequently, the biosorption capacity of the bed, however it took to faster bed saturation, with steeper rupture curves. On the other hand, in the tests with lower flow, the adsorvate had a longer time of contact with the biosorbent particles resulting in greater removal of the pesticide. The increase in the concentration of the solution fed to the column resulted in a greater driving force in the mass transfer process and, consequently, in a greater biosorption capacity of the bed. The two full-scale treatment systems, System 1 and System 2, achieved removal of 57.88% and 50.53%, respectively, noting that the adsorption technology for the treatment of effluents contaminated with the metomil pesticide proved to be quite promising. The elementary analysis, by TXRF, showed that the leaching, mainly of Ca2+ and K+ salts, may have caused the vacancy of active sites, providing increased removal of methomyl by adsorption in the adsorbent particles of residual orange bagasse.
id UFG-2_848ecef35b6be2c01e37b834256917d0
oai_identifier_str oai:repositorio.bc.ufg.br:tede/10703
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Seolatto, Araceli Aparecidahttp://lattes.cnpq.br/1495882445078650Teles, Helder Lopeshttp://lattes.cnpq.br/5902911518497333Seolatto, Araceli AparecidaTeles, Helder LopesFreitas, Fernanada FerreiraAlonso, Christian GonçalvesOstroski, Indianara Conceiçãohttp://lattes.cnpq.br/9308137176728062Zimmer, Thiago Ruiz2020-09-15T11:33:21Z2020-09-15T11:33:21Z2020-01-30ZIMMER, T. R. Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual. 2020. 134 f. Tese (Doutorado em Química) - Universidade Federal de Goiás, Goiânia, 2020.http://repositorio.bc.ufg.br/tede/handle/tede/10703ark:/38995/0013000007vg7This work consisted of studying the use of residual orange pomace from the juice processing industry as an adsorbent for the removal of methomyl, an extremely toxic carbamate pesticide, prepared in the laboratory as a synthetic aqueous solution to simulate the washing effluent of equipment used in activities spraying. Initially, the biosorbent biomass was subjected to surface characterization by means of scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). From the images obtained by SEM it was possible to observe many irregularities on the surface of the adsorbent particles, however it was not possible to visualize macro or micro pores, denoting little porous particles. The study of the spectrograms obtained by FTIR revealed the presence of hydroxyl, carbonyl and carboxylic groups on the surface of the adsorbent particles. The biosorption tests were carried out in three stages. The first stage consisted of batch tests. The kinetics, the isotherm and the effects of pH and solid/liquid ratio (R) were evaluated, using the Central Rotational Composite Design 22 (DCCR 22), on the adsorption capacity of metomil in orange pomace particles (q). The second stage consisted of biosorption tests in pilot columns of 1 cm in diameter and fixed bed of orange bagasse of 30 cm, operated in continuous upward flow. In this step, the effects of flow (1, 5 and 10 mL) and the initial concentration of the affluent solution (20 and 50 mg.L−1) on the process were evaluated. Finally, the third step consisted of scaling up the biosorption column. Two systems were evaluated, System 1, consisting of two tubes 100 mm in diameter, one bed of 50 cm high orange pomace followed by a bed of foam 100 cm high, and System 2, consisting of three tubes 100 mm in diameter, being a bed of “gravel 2” 100 cm high, followed by a bed of orange pomace 100 cm high, followed by per 100 cm high foam bed, both operated in continuous upward flow. During the operation of System 1, elementary analysis was performed by fluorescence spectroscopy with total X-ray reflection (TXRF), of samples of affluent and effluent solutions, in order to qualitatively and quantitatively assess which elements had the greatest influence on the biosorption process of metomil in orange pomace. In batch tests, a better fit was obtained for the pseudo-second order kinetic model (R2 = 0.949), concluding that the chemisorption was the controlling step of the process. The Langmuir isotherm model fitted better to the experimental data (R2 = 0.989) confirming the adsorption in monolayers, without interaction between the adsorbate molecules. The statistical study of the effects of pH and the solid/liquid ratio (R) on the adsorption capacity of methomyl in the orange pomace particles resulted in higher values of adsorption capacity (q = 3.73 and q = 3.43 mg.g−1), obtained at pH 6.0 and 4.5 with R values equal to 0.017 and 0.015 (g.mL−1), respectively. Thus, it was concluded that there was greater adsorption in tests containing a greater mass of adsorbent at slightly acidic pH. The study of the effects of the flow and the initial concentration on the biosorption of methomel in orange pomace carried out in the columns on a pilot scale demonstrated that the increase in flow increased the mass transfer rate and, consequently, the biosorption capacity of the bed, however it took to faster bed saturation, with steeper rupture curves. On the other hand, in the tests with lower flow, the adsorvate had a longer time of contact with the biosorbent particles resulting in greater removal of the pesticide. The increase in the concentration of the solution fed to the column resulted in a greater driving force in the mass transfer process and, consequently, in a greater biosorption capacity of the bed. The two full-scale treatment systems, System 1 and System 2, achieved removal of 57.88% and 50.53%, respectively, noting that the adsorption technology for the treatment of effluents contaminated with the metomil pesticide proved to be quite promising. The elementary analysis, by TXRF, showed that the leaching, mainly of Ca2+ and K+ salts, may have caused the vacancy of active sites, providing increased removal of methomyl by adsorption in the adsorbent particles of residual orange bagasse.Este trabalho consistiu no estudo da utilização de bagaço de laranja residual da indústria de processamento de sucos como adsorvente para a remoção de metomil, um pesticida carbamato extremamente tóxico, preparado em laboratório como solução aquosa sintética visando simular o efluente de lavagem de equipamentos utilizados em atividades de pulverização. Inicialmente a biomassa biossorvente foi submetida à caracterização superficial por meio de microscopia eletrônica de varredura (MEV) e espectroscopia no infravermelho (FTIR). A partir das imagens obtidas por MEV foi possível observar muitas irregularidades na superfície das partículas adsorventes, porém não foi possível visualizar macro ou micro poros, denotando partículas pouco porosas. O estudo dos espectrogramas obtidos por FTIR revelou a presença de hidroxila, carbonila e grupos carboxílicos na superfície das partículas adsorventes. Os ensaios de biossorção seguiram-se à caracterização da biomassa, sendo realizados em três etapas. A primeira etapa consistiu em ensaios realizados em bateladas. Foram avaliados a cinética, a isoterma e os efeitos do pH e da razão sólido/líquido (R), utilizando-se o Delineamento Composto Central Rotacional 22 (DCCR 22), sobre a capacidade de adsorção (q) de metomil nas partículas de bagaço de laranja. A segunda etapa consistiu em ensaios de biossorção em colunas piloto de 1 cm de diâmetro e leito-fixo de bagaço de laranja de 30 cm, operadas em fluxo contínuo ascendente. Nesta etapa foram avaliados os efeitos da vazão (1, 5 e 10 mL) e da concentração inicial da solução afluente (20 e 50 mg.L−1) sobre o processo. Finalmente, a terceira etapa consistiu no aumento de escala da coluna de biossorção.Foram avaliados dois sistemas, o Sistema 1, composto por dois tubos de 100 mm de diâmetro, sendo um leito de bagaço de laranja de 50 cm de altura seguido por leito de espuma de 100 cm de altura, e o Sistema 2, composto por três tubos de 100 mm de diâmetro, sendo um leito de “brita 2” de 100 cm de altura, seguido de leito de bagaço de laranja de 100 cm de altura, seguido por leito de espuma de 100 cm de altura, ambos operados em fluxo contínuo ascendente. Durante a operação do Sistema 1 foi realizada análise elementar por espectroscopia de fluorescência com reflexão total dos raios-X (TXRF), de amostras de soluções afluentes e efluentes, a fim de avaliar qualitativamente e quantitativamente quais elementos apresentaram maior influência sobre o processo de biossorção de metomil em bagaço de laranja. Nos ensaios em bateladas obteve-se melhor ajuste para o modelo cinético de pseudo-segunda ordem (R2=0,949) concluindo-se que a quimissorção foi a etapa controladora do processo. O modelo da isoterma de Langmuir ajustou-se melhor aos dados experimentais (R2=0,989) confirmando a adsorção em monocamadas, sem interação entre as moléculas do adsorvato. O estudo estatístico dos efeitos do pH e da razão sólido/líquido (R) sobre a capacidade de adsorção de metomil nas partículas de bagaço de laranja resultou em maiores valores de capacidade de adsorção (q = 3,73 e q = 3,43 mg.g−1), obtidos nas condições de pH 6,0 e 4,5 com valores de R iguais a 0,017 e 0,015 (g.mL−1), respectivamente. Dessa forma concluiu-se que houve maior adsorção nos ensaios contendo maior massa de adsorvente em pH levemente ácido. O estudo dos efeitos da vazão e da concentração inicial sobre a biossorção de metomil em bagaço de laranja realizado nas colunas em escala piloto demonstrou que o aumento de vazão aumentou a taxa de transferência de massa e, consequentemente a capacidade de biossorção do leito, porém levou à saturação mais rápida do leito, com curvas de ruptura mais íngremes. Por outro lado, nos ensaios com menor vazão o adsorvato teve maior tempo de contato com as partículas biossorventes resultando em maior remoção do pesticida. O aumento da concentração da solução alimentada à coluna resultou em maior força motriz no processo de transferência de massa e, consequentemente, em maior capacidade de biossorção do leito. Os dois sistemas de tratamento em escala real, Sistema 1 e Sistema 2, atingiram remoção de 57,88% e 50,53%, respectivamente, ressaltando que a tecnologia de adsorção para o tratamento de efluentes contaminados com o pesticida metomil mostrou-se bastante promissora. A análise elementar, por TXRF, mostrou que a lixiviação, principalmente de sais de Ca2+e K+, pode ter proporcionado a desocupação de sítios ativos proporcionando maior remoção de metomil por adsorção nas partículas adsorventes de bagaço de laranja residual.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2020-09-14T15:52:43Z No. of bitstreams: 2 Tese - Thiago Ruiz Zimmer - 2020.pdf: 2951701 bytes, checksum: 46a3a4e2fcc53e6e13d63f7c24d00599 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2020-09-15T11:33:21Z (GMT) No. of bitstreams: 2 Tese - Thiago Ruiz Zimmer - 2020.pdf: 2951701 bytes, checksum: 46a3a4e2fcc53e6e13d63f7c24d00599 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5)Made available in DSpace on 2020-09-15T11:33:21Z (GMT). No. of bitstreams: 2 Tese - Thiago Ruiz Zimmer - 2020.pdf: 2951701 bytes, checksum: 46a3a4e2fcc53e6e13d63f7c24d00599 (MD5) license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) Previous issue date: 2020-01-30porUniversidade Federal de GoiásPrograma de Pós-graduação em Química (IQ)UFGBrasilInstituto de Química - IQ (RG)Attribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessTratamento de efluentesAdsorçãoPesticidaMetomilBiomassa lignocelulósicaLeito-fixoAnálise elementarTXRFAdsorptionPesticideMethomylLignocellulosic biomassStatistical studyFixed bedElemental analysisTXRFCIENCIAS EXATAS E DA TERRA::QUIMICAEstudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residualinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis8050050050030190reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALTese - Thiago Ruiz Zimmer - 2020.pdfTese - Thiago Ruiz Zimmer - 2020.pdfapplication/pdf2951701http://repositorio.bc.ufg.br/tede/bitstreams/2d7c0717-8eaa-415e-b5df-9856400f1122/download46a3a4e2fcc53e6e13d63f7c24d00599MD53CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811http://repositorio.bc.ufg.br/tede/bitstreams/0cf169c5-efc7-45e4-9a5b-a67a0e7f610b/downloade39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/6704d352-34b5-4839-a1e7-2b79bdf30327/download8a4605be74aa9ea9d79846c1fba20a33MD51tede/107032020-09-15 08:33:23.423http://creativecommons.org/licenses/by-nc-nd/3.0/br/Attribution-NonCommercial-NoDerivs 3.0 Brazilopen.accessoai:repositorio.bc.ufg.br:tede/10703http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2020-09-15T11:33:23Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual
title Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual
spellingShingle Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual
Zimmer, Thiago Ruiz
Tratamento de efluentes
Adsorção
Pesticida
Metomil
Biomassa lignocelulósica
Leito-fixo
Análise elementar
TXRF
Adsorption
Pesticide
Methomyl
Lignocellulosic biomass
Statistical study
Fixed bed
Elemental analysis
TXRF
CIENCIAS EXATAS E DA TERRA::QUIMICA
title_short Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual
title_full Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual
title_fullStr Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual
title_full_unstemmed Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual
title_sort Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual
author Zimmer, Thiago Ruiz
author_facet Zimmer, Thiago Ruiz
author_role author
dc.contributor.advisor1.fl_str_mv Seolatto, Araceli Aparecida
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/1495882445078650
dc.contributor.advisor-co1.fl_str_mv Teles, Helder Lopes
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/5902911518497333
dc.contributor.referee1.fl_str_mv Seolatto, Araceli Aparecida
dc.contributor.referee2.fl_str_mv Teles, Helder Lopes
dc.contributor.referee3.fl_str_mv Freitas, Fernanada Ferreira
dc.contributor.referee4.fl_str_mv Alonso, Christian Gonçalves
dc.contributor.referee5.fl_str_mv Ostroski, Indianara Conceição
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/9308137176728062
dc.contributor.author.fl_str_mv Zimmer, Thiago Ruiz
contributor_str_mv Seolatto, Araceli Aparecida
Teles, Helder Lopes
Seolatto, Araceli Aparecida
Teles, Helder Lopes
Freitas, Fernanada Ferreira
Alonso, Christian Gonçalves
Ostroski, Indianara Conceição
dc.subject.por.fl_str_mv Tratamento de efluentes
Adsorção
Pesticida
Metomil
Biomassa lignocelulósica
Leito-fixo
Análise elementar
TXRF
topic Tratamento de efluentes
Adsorção
Pesticida
Metomil
Biomassa lignocelulósica
Leito-fixo
Análise elementar
TXRF
Adsorption
Pesticide
Methomyl
Lignocellulosic biomass
Statistical study
Fixed bed
Elemental analysis
TXRF
CIENCIAS EXATAS E DA TERRA::QUIMICA
dc.subject.eng.fl_str_mv Adsorption
Pesticide
Methomyl
Lignocellulosic biomass
Statistical study
Fixed bed
Elemental analysis
TXRF
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::QUIMICA
description This work consisted of studying the use of residual orange pomace from the juice processing industry as an adsorbent for the removal of methomyl, an extremely toxic carbamate pesticide, prepared in the laboratory as a synthetic aqueous solution to simulate the washing effluent of equipment used in activities spraying. Initially, the biosorbent biomass was subjected to surface characterization by means of scanning electron microscopy (SEM) and infrared spectroscopy (FTIR). From the images obtained by SEM it was possible to observe many irregularities on the surface of the adsorbent particles, however it was not possible to visualize macro or micro pores, denoting little porous particles. The study of the spectrograms obtained by FTIR revealed the presence of hydroxyl, carbonyl and carboxylic groups on the surface of the adsorbent particles. The biosorption tests were carried out in three stages. The first stage consisted of batch tests. The kinetics, the isotherm and the effects of pH and solid/liquid ratio (R) were evaluated, using the Central Rotational Composite Design 22 (DCCR 22), on the adsorption capacity of metomil in orange pomace particles (q). The second stage consisted of biosorption tests in pilot columns of 1 cm in diameter and fixed bed of orange bagasse of 30 cm, operated in continuous upward flow. In this step, the effects of flow (1, 5 and 10 mL) and the initial concentration of the affluent solution (20 and 50 mg.L−1) on the process were evaluated. Finally, the third step consisted of scaling up the biosorption column. Two systems were evaluated, System 1, consisting of two tubes 100 mm in diameter, one bed of 50 cm high orange pomace followed by a bed of foam 100 cm high, and System 2, consisting of three tubes 100 mm in diameter, being a bed of “gravel 2” 100 cm high, followed by a bed of orange pomace 100 cm high, followed by per 100 cm high foam bed, both operated in continuous upward flow. During the operation of System 1, elementary analysis was performed by fluorescence spectroscopy with total X-ray reflection (TXRF), of samples of affluent and effluent solutions, in order to qualitatively and quantitatively assess which elements had the greatest influence on the biosorption process of metomil in orange pomace. In batch tests, a better fit was obtained for the pseudo-second order kinetic model (R2 = 0.949), concluding that the chemisorption was the controlling step of the process. The Langmuir isotherm model fitted better to the experimental data (R2 = 0.989) confirming the adsorption in monolayers, without interaction between the adsorbate molecules. The statistical study of the effects of pH and the solid/liquid ratio (R) on the adsorption capacity of methomyl in the orange pomace particles resulted in higher values of adsorption capacity (q = 3.73 and q = 3.43 mg.g−1), obtained at pH 6.0 and 4.5 with R values equal to 0.017 and 0.015 (g.mL−1), respectively. Thus, it was concluded that there was greater adsorption in tests containing a greater mass of adsorbent at slightly acidic pH. The study of the effects of the flow and the initial concentration on the biosorption of methomel in orange pomace carried out in the columns on a pilot scale demonstrated that the increase in flow increased the mass transfer rate and, consequently, the biosorption capacity of the bed, however it took to faster bed saturation, with steeper rupture curves. On the other hand, in the tests with lower flow, the adsorvate had a longer time of contact with the biosorbent particles resulting in greater removal of the pesticide. The increase in the concentration of the solution fed to the column resulted in a greater driving force in the mass transfer process and, consequently, in a greater biosorption capacity of the bed. The two full-scale treatment systems, System 1 and System 2, achieved removal of 57.88% and 50.53%, respectively, noting that the adsorption technology for the treatment of effluents contaminated with the metomil pesticide proved to be quite promising. The elementary analysis, by TXRF, showed that the leaching, mainly of Ca2+ and K+ salts, may have caused the vacancy of active sites, providing increased removal of methomyl by adsorption in the adsorbent particles of residual orange bagasse.
publishDate 2020
dc.date.accessioned.fl_str_mv 2020-09-15T11:33:21Z
dc.date.available.fl_str_mv 2020-09-15T11:33:21Z
dc.date.issued.fl_str_mv 2020-01-30
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ZIMMER, T. R. Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual. 2020. 134 f. Tese (Doutorado em Química) - Universidade Federal de Goiás, Goiânia, 2020.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/10703
dc.identifier.dark.fl_str_mv ark:/38995/0013000007vg7
identifier_str_mv ZIMMER, T. R. Estudo da remoção do pesticida metomil em efluentes simulados por biossorção em bagaço de laranja residual. 2020. 134 f. Tese (Doutorado em Química) - Universidade Federal de Goiás, Goiânia, 2020.
ark:/38995/0013000007vg7
url http://repositorio.bc.ufg.br/tede/handle/tede/10703
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 80
dc.relation.confidence.fl_str_mv 500
500
500
dc.relation.department.fl_str_mv 30
dc.relation.cnpq.fl_str_mv 190
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Química (IQ)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Química - IQ (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/2d7c0717-8eaa-415e-b5df-9856400f1122/download
http://repositorio.bc.ufg.br/tede/bitstreams/0cf169c5-efc7-45e4-9a5b-a67a0e7f610b/download
http://repositorio.bc.ufg.br/tede/bitstreams/6704d352-34b5-4839-a1e7-2b79bdf30327/download
bitstream.checksum.fl_str_mv 46a3a4e2fcc53e6e13d63f7c24d00599
e39d27027a6cc9cb039ad269a5db8e34
8a4605be74aa9ea9d79846c1fba20a33
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172593699782656