Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/5989 |
Resumo: | Cancer is a group of diseases characterized by uncontrolled cell proliferation as a result of epigenetic changes, genetic mutations and accumulated mutations over the time. Tumor cells can invade other tissues in the body in a process called metastasis, significantly worsening the patient's prognosis. In Brazil, for the biennium 2014/2015 are expected 576,000 new cases and around the world, according to WHO, 27 million new cancer cases are expected in 2030 and 17 million deaths from the disease. The antiapoptotic proteins, members of Bcl-2 family proteins, are essential for the survival of tumor cells, even when there are cell death stimuli. In this study were compiled, integrated and prepared the largest publicly available data sets containing biological activity data against the antiapoptotic protein Bcl-xL. Robust and predictive pharmacophore models and QSAR models in line with the OECD recommendations were generated. The pharmacophore models discriminated active and inactive structures with a rate of 0.68-0.92 of success and QSAR models discriminated active and inactive structures at a rate of 0.89-0.93 of success. NCI 2014 dataset was carefully prepared to be submitted to the virtual screening process in which the best pharmacophore model was used as molecular filter. Among the 280 thousand compounds in NCI dataset, 1407 compounds passed to the next stage in which the best consensus QSAR model was used to predict their activity. In the end, the top 50 compounds were selected for purchase and proceed to experimental evaluation as potential candidates for antiapoptotic protein Bcl-xL inhibitors. |
id |
UFG-2_87fd250fe0b29d80bfe5cf02216e235f |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/5989 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Andrade, Carolina Hortahttp://lattes.cnpq.br/2018317447324228Andrade , Carolina HortaTrossini , Gustavo Henrique GoulartCravo , Pedro Vítor LemosLacerda , Elisângela de Paula Silveirahttp://lattes.cnpq.br/8872070438070383Silva, Arthur de Carvalho e2016-08-25T11:33:41Z2015-12-04SILVA, A. C. Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais. 2015. 104 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2015.http://repositorio.bc.ufg.br/tede/handle/tede/5989Cancer is a group of diseases characterized by uncontrolled cell proliferation as a result of epigenetic changes, genetic mutations and accumulated mutations over the time. Tumor cells can invade other tissues in the body in a process called metastasis, significantly worsening the patient's prognosis. In Brazil, for the biennium 2014/2015 are expected 576,000 new cases and around the world, according to WHO, 27 million new cancer cases are expected in 2030 and 17 million deaths from the disease. The antiapoptotic proteins, members of Bcl-2 family proteins, are essential for the survival of tumor cells, even when there are cell death stimuli. In this study were compiled, integrated and prepared the largest publicly available data sets containing biological activity data against the antiapoptotic protein Bcl-xL. Robust and predictive pharmacophore models and QSAR models in line with the OECD recommendations were generated. The pharmacophore models discriminated active and inactive structures with a rate of 0.68-0.92 of success and QSAR models discriminated active and inactive structures at a rate of 0.89-0.93 of success. NCI 2014 dataset was carefully prepared to be submitted to the virtual screening process in which the best pharmacophore model was used as molecular filter. Among the 280 thousand compounds in NCI dataset, 1407 compounds passed to the next stage in which the best consensus QSAR model was used to predict their activity. In the end, the top 50 compounds were selected for purchase and proceed to experimental evaluation as potential candidates for antiapoptotic protein Bcl-xL inhibitors.Câncer é um grupo de doenças caracterizadas pela proliferação celular descontrolada como resultado de alterações epigenéticas, genéticas e mutações acumuladas ao longo do tempo. Células tumorais podem invadir outros tecidos no organismo em um processo chamado metástase, agravando consideravelmente o prognóstico do paciente. No Brasil, para o biênio de 2014/2015 são esperados 576 mil novos casos e, em todo o mundo, segundo a OMS, são esperados 27 milhões de novos casos de câncer no ano de 2030 e 17 milhões de mortes pela doença. As proteínas antiapoptóticas da família Bcl-2 são fundamentais para a sobrevida das células tumorais, uma vez que as mantém funcionais mesmo frente a estímulos de morte celular. Neste estudo foram compilados, integrados e preparados os maiores conjuntos de dados disponíveis publicamente contendo registros de atividade biológica contra a proteína antiapoptótica Bcl-xL. Modelos farmacofóricos robustos e preditivos bem como modelos de QSAR em consonância com as recomendações da OECD foram gerados. As taxas de acerto dos modelos farmacofóricos discriminaram estruturas ativas de inativas com taxa de 0,68-0,92 de sucesso e os modelos de QSAR discriminaram estruturas ativas e inativas com taxa de 0,89-0,93 de sucesso. A série de dados NCI 2014 foi preparada cuidadosamente para ser submetida ao processo de triagem virtual, no qual foi usado o melhor modelo farmacofórico como filtro molecular. Dentre os 280 mil compostos presentes na série de dados do NCI, 1407 compostos passaram para a etapa seguinte, na qual o melhor modelo consenso de QSAR foi usado para predizer as atividades dos compostos. Ao final, os 50 melhores compostos foram selecionados para serem adquiridos e prosseguirão para avaliação experimental como potenciais candidatos a inibidores da proteína antiapoptótica Bcl-xL.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-25T11:32:45Z No. of bitstreams: 2 Dissertação - Arthur de Carvalho e Silva - 2015.pdf: 4860571 bytes, checksum: 89e248888020f7d914c855c172812411 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-08-25T11:33:41Z (GMT) No. of bitstreams: 2 Dissertação - Arthur de Carvalho e Silva - 2015.pdf: 4860571 bytes, checksum: 89e248888020f7d914c855c172812411 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2016-08-25T11:33:41Z (GMT). No. of bitstreams: 2 Dissertação - Arthur de Carvalho e Silva - 2015.pdf: 4860571 bytes, checksum: 89e248888020f7d914c855c172812411 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2015-12-04Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciências Farmacêuticas (FF)UFGBrasilFaculdade Farmácia - FF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessQSARCADDPlanejamento de fármacosCâncerBcl2QSARCADDDrugDesignCancerBcl2CIENCIAS BIOLOGICAS::FARMACOLOGIAPlanejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumoraisDesign and identification in silico of new anticancer prototypes candidatesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis82493698819615241260060060060060102811615242093757008146506511543632075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/0b242c3f-91c5-4a8d-9a84-4fa0b4b40f1f/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/7f166c44-ffe2-44fe-858a-e634b7cbbb1b/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/e43cb96c-8a53-4700-afe1-c20abf34a173/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/594ff88c-67fc-4eb5-aa80-5c931607a234/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Arthur de Carvalho e Silva - 2015.pdfDissertação - Arthur de Carvalho e Silva - 2015.pdfapplication/pdf4860571http://repositorio.bc.ufg.br/tede/bitstreams/bb54ae07-3508-4ac4-b79c-5386285ac0fd/download89e248888020f7d914c855c172812411MD55tede/59892016-08-25 08:33:41.245http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/5989http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2016-08-25T11:33:41Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais |
dc.title.alternative.eng.fl_str_mv |
Design and identification in silico of new anticancer prototypes candidates |
title |
Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais |
spellingShingle |
Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais Silva, Arthur de Carvalho e QSAR CADD Planejamento de fármacos Câncer Bcl2 QSAR CADD Drug Design Cancer Bcl2 CIENCIAS BIOLOGICAS::FARMACOLOGIA |
title_short |
Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais |
title_full |
Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais |
title_fullStr |
Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais |
title_full_unstemmed |
Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais |
title_sort |
Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais |
author |
Silva, Arthur de Carvalho e |
author_facet |
Silva, Arthur de Carvalho e |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Andrade, Carolina Horta |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2018317447324228 |
dc.contributor.referee1.fl_str_mv |
Andrade , Carolina Horta |
dc.contributor.referee2.fl_str_mv |
Trossini , Gustavo Henrique Goulart |
dc.contributor.referee3.fl_str_mv |
Cravo , Pedro Vítor Lemos |
dc.contributor.referee4.fl_str_mv |
Lacerda , Elisângela de Paula Silveira |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/8872070438070383 |
dc.contributor.author.fl_str_mv |
Silva, Arthur de Carvalho e |
contributor_str_mv |
Andrade, Carolina Horta Andrade , Carolina Horta Trossini , Gustavo Henrique Goulart Cravo , Pedro Vítor Lemos Lacerda , Elisângela de Paula Silveira |
dc.subject.por.fl_str_mv |
QSAR CADD Planejamento de fármacos Câncer Bcl2 |
topic |
QSAR CADD Planejamento de fármacos Câncer Bcl2 QSAR CADD Drug Design Cancer Bcl2 CIENCIAS BIOLOGICAS::FARMACOLOGIA |
dc.subject.eng.fl_str_mv |
QSAR CADD Drug Design Cancer Bcl2 |
dc.subject.cnpq.fl_str_mv |
CIENCIAS BIOLOGICAS::FARMACOLOGIA |
description |
Cancer is a group of diseases characterized by uncontrolled cell proliferation as a result of epigenetic changes, genetic mutations and accumulated mutations over the time. Tumor cells can invade other tissues in the body in a process called metastasis, significantly worsening the patient's prognosis. In Brazil, for the biennium 2014/2015 are expected 576,000 new cases and around the world, according to WHO, 27 million new cancer cases are expected in 2030 and 17 million deaths from the disease. The antiapoptotic proteins, members of Bcl-2 family proteins, are essential for the survival of tumor cells, even when there are cell death stimuli. In this study were compiled, integrated and prepared the largest publicly available data sets containing biological activity data against the antiapoptotic protein Bcl-xL. Robust and predictive pharmacophore models and QSAR models in line with the OECD recommendations were generated. The pharmacophore models discriminated active and inactive structures with a rate of 0.68-0.92 of success and QSAR models discriminated active and inactive structures at a rate of 0.89-0.93 of success. NCI 2014 dataset was carefully prepared to be submitted to the virtual screening process in which the best pharmacophore model was used as molecular filter. Among the 280 thousand compounds in NCI dataset, 1407 compounds passed to the next stage in which the best consensus QSAR model was used to predict their activity. In the end, the top 50 compounds were selected for purchase and proceed to experimental evaluation as potential candidates for antiapoptotic protein Bcl-xL inhibitors. |
publishDate |
2015 |
dc.date.issued.fl_str_mv |
2015-12-04 |
dc.date.accessioned.fl_str_mv |
2016-08-25T11:33:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, A. C. Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais. 2015. 104 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2015. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/5989 |
identifier_str_mv |
SILVA, A. C. Planejamento e identificação “in silico” de novos candidatos a protótipos de fármacos antitumorais. 2015. 104 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2015. |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/5989 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
824936988196152412 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
6010281161524209375 |
dc.relation.cnpq.fl_str_mv |
700814650651154363 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciências Farmacêuticas (FF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Faculdade Farmácia - FF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/0b242c3f-91c5-4a8d-9a84-4fa0b4b40f1f/download http://repositorio.bc.ufg.br/tede/bitstreams/7f166c44-ffe2-44fe-858a-e634b7cbbb1b/download http://repositorio.bc.ufg.br/tede/bitstreams/e43cb96c-8a53-4700-afe1-c20abf34a173/download http://repositorio.bc.ufg.br/tede/bitstreams/594ff88c-67fc-4eb5-aa80-5c931607a234/download http://repositorio.bc.ufg.br/tede/bitstreams/bb54ae07-3508-4ac4-b79c-5386285ac0fd/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 89e248888020f7d914c855c172812411 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1823229452240289792 |