Condutância em nanofios magnéticos diluídos

Detalhes bibliográficos
Autor(a) principal: Mendes, Udson Cabra
Data de Publicação: 2010
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000cc8h
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tde/2888
Resumo: We investigate core-shell nanowires of diluted magnetic semiconductors (DMS) with remote n-type modulation doping. The incorporation of Mn2 ions acting as spin 5/2 impurities in the core region of the wire gives rise to a strong s-d exchange coupling between electrons in the wire and those of the d levels of the Mn2 ions. Applying an external magnetic eld along the axis of the wire, within the mean eld approximation, the s-d exchange generates a spin-dependent core potential. A gate voltage is applied radially to wire, to obtain some control over the density of the wire. Electronic strucutre of the wire was calculated within the e?ective mass approximation, in both approximations Hartree and spin density functional theory. We calculated the conductance of wire using the Landauer-B?uttiker formulation in the linear response regime, which generally results in a total conductance with well-de ned plateaus in GT = 2; 6; 10G0 (G0 = e2=h is the quanta of conductance), which occurred because in the system investigated the rst level is twofold degenerated (spin degenerescence) and the others are fourfold degenerated (spin degenerescence and orbital angular momentum). In the absence of a magnetic eld we observe that when we take into account the e?ects of exchange and correlation, the states with eigenvalues of Lz nonzero will be polarized while those with l = 0 isn't polarized. This unpolarized level with eigenvalue of Lz null suggests that, perhaps, the 0.7 anomaly (the emergence of two plateau at G = 0:7G0 and the other in G = G0) quantum wires on existing geometry of split-gate is related to the geometry of the wire. The results for total energy show that there are a competition between the ferromagnetic and paramagnetic states.
id UFG-2_a2c68c51a5bffd689bfc1f31adc2a854
oai_identifier_str oai:repositorio.bc.ufg.br:tde/2888
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Avelar, Ardiley Torreshttp://lattes.cnpq.br/5732286631137637Leão, Salvino de Araújohttp://lattes.cnpq.br/2549501479254454Mendes, Udson Cabra2014-08-06T12:19:22Z2010MENDES, Udson Cabra. Condutância em nanofios magnéticos diluídos. 2010. 97 f. Dissertação ( Mestrado em Fisica) - Universidade Federal de Goiás, Goiânia.http://repositorio.bc.ufg.br/tede/handle/tde/2888ark:/38995/001300000cc8hWe investigate core-shell nanowires of diluted magnetic semiconductors (DMS) with remote n-type modulation doping. The incorporation of Mn2 ions acting as spin 5/2 impurities in the core region of the wire gives rise to a strong s-d exchange coupling between electrons in the wire and those of the d levels of the Mn2 ions. Applying an external magnetic eld along the axis of the wire, within the mean eld approximation, the s-d exchange generates a spin-dependent core potential. A gate voltage is applied radially to wire, to obtain some control over the density of the wire. Electronic strucutre of the wire was calculated within the e?ective mass approximation, in both approximations Hartree and spin density functional theory. We calculated the conductance of wire using the Landauer-B?uttiker formulation in the linear response regime, which generally results in a total conductance with well-de ned plateaus in GT = 2; 6; 10G0 (G0 = e2=h is the quanta of conductance), which occurred because in the system investigated the rst level is twofold degenerated (spin degenerescence) and the others are fourfold degenerated (spin degenerescence and orbital angular momentum). In the absence of a magnetic eld we observe that when we take into account the e?ects of exchange and correlation, the states with eigenvalues of Lz nonzero will be polarized while those with l = 0 isn't polarized. This unpolarized level with eigenvalue of Lz null suggests that, perhaps, the 0.7 anomaly (the emergence of two plateau at G = 0:7G0 and the other in G = G0) quantum wires on existing geometry of split-gate is related to the geometry of the wire. The results for total energy show that there are a competition between the ferromagnetic and paramagnetic states.Investigamos nano fios de semicondutores magnéticos dilu??dos (DMSs - Diluted Magnetic Semiconductors) do tipo caroço-casca com dopagem remota tipo-n. A incorporação dos íons de Mn+2, que atuam como impurezas de spin 5/2 no caroço do fi o, faz surgir um forte acoplamento de trocas dentre os eletrons do fio e aqueles dos níveis d do íon Mn+2. Com a aplicação de um campo magnético externo ao longo do eixo do fi o, na aproximação de campo médio, a interação de troca s-d gera um potencial dependente do spin na região do caroço do fi o. Um potencial de gate é aplicado radialmente ao nanofi o, para obtermos um certo controle sobre a densidade eletrônica do fi o. Calculamos a estrutura eletrônica do nanofi o de DMSs usando o modelo da massa efetiva, tanto na aproximação de Hartree quanto na teoria do funcional da densidade dependente de spin (SDFT - Spin Density Functional Theory). Calculamos a condutância do nano fio usando a formulação de Landauer-B?uttiker no regime de resposta linear, o que de modo geral, resultou numa condutância total com platôs bem de finidos em GT = 2; 6; 10G0 (G0 = e2=h ?e o quanta de condutância), o que ocorreu porque no sistema investigado a primeira subbanda ?e duplamente degenerada (degenerescência de spin) e as outras duas são quadruplamente degenerada (degenerescência de spin e de momento angular orbital). Na ausência de um campo magnético observamos que ao levarmos em conta os efeitos de troca e correlação, os estados que possuem autovalor de Lz diferente de zero se polarizam enquanto que os que possuem l = 0 não se polarizam. Essa não-polarização do nível com autovalor de Lz nulo sugere que, talvez, a anomalia 0,7 (o surgimento de dois platôs um em G = 0; 7G0 e outro em G = G0) existente em os quânticos com geometria de split-gate esteja relacionada com a geometria do o. Os resultados obtidos para a energia total mostram que há uma competição entre os estados ferromagnético e paramagnéticos.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2014-08-06T12:19:22Z No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) udson cabral.pdf: 2045459 bytes, checksum: 0c5126468995368f097978ee97cb41f5 (MD5)Made available in DSpace on 2014-08-06T12:19:22Z (GMT). No. of bitstreams: 2 license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) udson cabral.pdf: 2045459 bytes, checksum: 0c5126468995368f097978ee97cb41f5 (MD5) Previous issue date: 2010Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESConselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/6056/udson%20cabral.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Fisica (IF)UFGBrasilInstituto de Física - IF (RG)[1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Moln ́ar, M. L. Roukes, A. Y. Chtchelkanova, e D. M. Treger. Spintronics: A Spin-Based Electronics Vision for the Future. Science, 294, 1488, 2001. [2] D. D. Awschalom e M. E. Flatt ́e. Challenges for semiconductor spintronics. Nature Physics, 3, 153–159, 2007. [3] Y. K. Kato, R. C. Myers, A. C. Gossard, e D. D. Awschalom. Observation of the Spin Hall Effect in Semiconductors. Science, 304, 1910, 2004. [4] W. P. McCray. MBE deserves a place in the history books. Nature Nanotechnology, 2, 259, 2007. [5] T. Dieti, D. D. Awschalom, M. Kaminska, e H. Ohno. Spintronics and Semimetals. Elsevier, 2008. [6] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, e J. Chazelas. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Super- lattices. Phys. Rev. Lett., 61, 2472, 1988. [7] G. Binasch, P. Gr ̈unberg, F. Saurenbach, e W. Zinn. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B, 39, 4828, 1989. [8] W. P. McCray. How spintronics went from the lab to the iPod. Nature Nanotechology, 4, 2, 2009. [9] J. Nitta, T. Akazaki, H. Takayanagi, e T. Enoki. Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure. Phys. Rev. Lett, 78, 1335, 1997. [10] S. Datta e B. Das. Eletronic analog of the electro-optic modulator. Appl. Phys. Lett., 56, 665, 1990. [11] Hyun Cheol Koo, Jae Hyun Kwon, Jonghwa Eom, Joonyeon Chang, Suk Hee Han, e Mark Johnson. Control of Spin Precession in a Spin-Injected Field Effect Transistor. Science, 325, 1515, 2009. BIBLIOGRAFIA 79 [12] D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, e H. Ohno. Magnetization vector manipulation by electric fields. Nature, 455, 515, 2008. [13] J. K. Furdyna. Diluted magnetic semiconductors. J. Appl. Phys., 64, R29, 1988. [14] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, e D. Ferrand. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science, 287, 1019, 2000. [15] M. Goryca, D. Ferrand, P. Kossacki, M. Nawrocki, W. Pacuski, W. Ma ́slana, J. A. Gaj, S. Tatarenko, J. Cibert, T. Wojtowicz, e G. Karczewski. Magnetization Dynamics Down to a Zero Field in Dilute (Cd,Mn)Te QuantumWells. Phys. Rev. Lett., 102, 046408, 2009. [16] C. Gould, A. Slobodskyy, D. Supp, T. Slobodskyy, P. Grabs, P. Hawrylak, F. Qu, G. Schmidt, e L.W. Molenkamp. Remanent Zero Field Spin Splitting of Self-Assembled Quantum Dots in a Paramagnetic Host. Phys. Rev. Lett., 97, 017202, 2006. [17] R. M. Abolfath, P. Hawrylak, e I. Zuti ́c. Tailoring Magnetism in Quantum Dots. Phys. Rev. Lett., 98, 207203, 2007. [18] W. Zaleszczyk, E. Janik, A. Presz, P. Dtu ́zewski, S. Kret, W. Szuszkiewicz, J. F. Morhange, E. Dynowska, H. Kirmse, W. Neumann, A. Petroutchik, L. T. Baczewski, G. Karczewski, e T. Wojtowicz. Zn1−xMnxTe Diluted Magnetic Semiconductor Nanowires Grown by Molecular Beam Epitaxy. Nano Lett., 8, 4061, 2008. [19] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwen- hoven, D. van der Marel, e C. T. Foxon. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett, 60, 848, 1988. [20] D A Wharam, T J Thornton, R Newbury, M Pepper, H Ahmed, J E F Frost, D G Hasko, D C Peacock, D A Ritchie, e G A C Jones. One-dimensional transport and the quantisation of the ballistic resistance. J. Phsy. C, 21, L209, 1988. [21] I. A. Shelykh, M. Rosenau da Costa, e A. C. Seridonio. Fractional quantization of ballistic conductance in 1D electron and hole systems. J. Phys.: Condens. Matter, 20, 164214, 2008. [22] T. P. Martin, A. Szorkovszky, A. P. Micolich, A. R. Hamilton, C. A. Marlow, R. P. Taylor, H. Linke, e H. Q. Xu. Field-orientation dependence of the Zeeman spin splitting in (In,Ga)As quantum point contacts. Phys. Rev. B, 81, 041303(R), 2010. [23] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, e D. A. Ritchie. Possible Spin Polarization in a One-Dimensional Electron Gas. Phys. Rev. Lett., 77, 135, 1996. BIBLIOGRAFIA 80 [24] A. A. Starikov, I. I. Yakimenko, e K. F. Berggren. Scenario for the 0.7-conductance anomaly in quantum point contacts. Phys. Rev. B, 67, 235319, 2003. [25] G. A. Fiete. Colloquium: The spin-incoherent Luttinger liquid. Rev. Mod. Phys., 79, 801, 2007. [26] Supriyo Datta. Eletronic Transport in Mesoscopic Systems. Cambridge Studies in Semicon- ductor Physics and Microelectronic Engineering. Cambridge University Press, 1995. [27] J. D. M. Vianna, A. Fazzio, e S. Canuto. Teoria Quˆantica de Mol ́eculas e S ́olidos: Simula ̧c ̃ao Computacional. Editora da Livraria da F ́ısica, 2004. [28] P. Hohenberg e W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136, 864, 1964. [29] W. Kohn e L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133, 1965. [30] J. A. Gaj, R. Planel, e F. Fishman. Relation of magneto-optical properties of free excitons to spin alignment of Mn2+ ions in Cd1−xMnxTe. Solid State Commun., 29, 435, 1979. [31] J. A. Gaj, W. Grieshaber, C. Bodin-Deshayes, J. Cibert, G. Feuillet, Y. Merle d’Aubign ́e, e A. Wasiela. Magneto-Optical study of interface mixing in the CdTe-(Cd,Mn)Te system. Phys. Rev. B, 50, 5512, 1994. [32] W. Grieshaber, A. Haury, J. Cibert, Y. Merle d’Aubign ́e, e A. Wasiela. Magneto-optic study of the interface in semimagnetic semiconductor heterostructures: Intrinsic effect and interface profile in CdTe-Cd1−xMnxTe. Phys. Rev. B, 53, 4891, 1996. [33] P. Kossacki, H. Boukari, M. Bertolini, D. Ferrand, J. Cibert, S. Tatarenko, J. A. Gaj, B. Deveaud, V. Ciulin, e M. Potemski. Photoluminescence of p-doped quantum wells with strong spin splitting. Phys. Rev. B, 70, 195337, 2004. [34] D. K. Ferry e S. M. Goodnick. Transport in Nanostructures. Cambridge Studies in Semi- conductor Physics and Microelectronic Engineering. Cambridge University Press, 2000. [35] X. Aymerich-Humet, F. Serra-Mestres, e J. Mill ́an. A generalized approximation of the Fermi-Dirac Integrals. J. Appl. Phys., 4, 2850, 1983. [36] M. Goano. Series expansion of the Fermi-Dirac Integral Fj (x) over the entire domain of real j and x. Solid-State Electronics, 36, 217, 1993. [37] H. S. Vosko, L. Wilk, e M. Nusair. Acurrate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200–1211, 1980. [38] Philip L. Taylor e Olle Heinonen. A Quantum Approach to Condensed Matter Physics. CambridgeUniversity Press, 2002. [39] D. Kosloff e R. Kosloff. A Fourier method solution for the time dependent Schr ̈odinger equation as a tool in molecular dynamics. J. Phys. Chem., 52, 35, 1983. [40] R. Kosloff. Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys. Chem., 92, 2087, 1988. [41] M. H. Degani e J. P. Leburton. Single-electron states and conductance in lateral-surface superlattices. Phys. Rev. B, 44, 10901, 1991. [42] M. H. Degani. Stark ladders in strongly coupled GaAs-AlAs superlattices. Appl. Phys. Lett., 59, 57, 1991. [43] M. H. Degani. Electron energy levels in a δ-doped layers in GaAs. Phys. Rev. B, 44, 5580, 1991. [44] M. H. Degani. Electronic properties of multiple Si δ-doping in GaAs. J. Appl. Phys., 70, 4362, 1991. [45] P. L. DeVries. A First Course in Computational Physics. Wiley, New York, 1993. [46] M. B ̈uttiker. Quantized transmission of a saddle-point constriction. Phsy.Rev. B, 41, 7906, 1990. [47] J. P. Perdew e Mel Levy. Extrema of the functional for the energy: Excited states form ground-state theory. Phys. Rev. B, 31, 6264, 1985. [48] Filipe Sammarco. Magnetocondutˆancia de fios quˆanticos interagentes. Disserta ̧c ̃ao de Mestrado, Instituto de F ́ısica de S ̃ao Carlos - USP, 2009.3162138865744262028600600600600600-4029658853652049306-83271462965037459292075167498588264571-2555911436985713659http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessNanofios magnéticosCondutânciaMagnetic nanowiresConductanceCIENCIAS EXATAS E DA TERRA::FISICACondutância em nanofios magnéticos diluídosConductancia in nanowires of magnetic diluitedinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALudson cabral.pdfudson cabral.pdfDissertação - PPGFIS/RG - Udson Cabral Mendesapplication/pdf2045459http://repositorio.bc.ufg.br/tede/bitstreams/dc7c367b-9f0e-4551-b8f8-e8bc24608a6e/download0c5126468995368f097978ee97cb41f5MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82142http://repositorio.bc.ufg.br/tede/bitstreams/c254db47-e206-404c-829a-158fc6084daa/download232e528055260031f4e2af4136033daaMD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/6e9fa4af-ad5b-4bcf-a85b-537500473f91/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-821936http://repositorio.bc.ufg.br/tede/bitstreams/deafe21f-1869-49b3-8b7a-31b31e534eda/download9833653f73f7853880c94a6fead477b1MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/6b185a55-7737-4a73-9b52-217ead724560/download9da0b6dfac957114c6a7714714b86306MD54TEXTudson cabral.pdf.txtudson cabral.pdf.txtExtracted Texttext/plain153173http://repositorio.bc.ufg.br/tede/bitstreams/5b3d2c33-979e-458e-98b7-4cfeb8fff54f/download7e6ce949537ecd9645d4485dcbc9c576MD56THUMBNAILudson cabral.pdf.jpgudson cabral.pdf.jpgGenerated Thumbnailimage/jpeg2823http://repositorio.bc.ufg.br/tede/bitstreams/3e95a7d5-8b7d-42bf-92dc-c8ac452f1b67/downloada69f187f360f1d499edc624ce239dd66MD57tde/28882014-08-11 11:54:00.768http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso abertoopen.accessoai:repositorio.bc.ufg.br:tde/2888http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2014-08-11T14:54Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQpDb20gYSBhcHJlc2VudGHDp8OjbyBkZXN0YSBsaWNlbsOnYSwgdm9jw6ogKG8gYXV0b3IgKGVzKSBvdSBvIHRpdHVsYXIgZG9zIGRpcmVpdG9zIGRlIGF1dG9yKSBjb25jZWRlIMOgIFVuaXZlcnNpZGFkZSBYWFggKFNpZ2xhIGRhIFVuaXZlcnNpZGFkZSkgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IGRpc3RyaWJ1aXIgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgcXVhbHF1ZXIgbWVpbyBvdSBmb3JtYXRvIHBhcmEgZmlucyBkZSBwcmVzZXJ2YcOnw6NvLgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlIG1hbnRlciBtYWlzIGRlIHVtYSBjw7NwaWEgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KVm9jw6ogZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIMOpIG9yaWdpbmFsIGUgcXVlIHZvY8OqIHRlbSBvIHBvZGVyIGRlIGNvbmNlZGVyIG9zIGRpcmVpdG9zIGNvbnRpZG9zIG5lc3RhIGxpY2Vuw6dhLiBWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIGNvbnRlbmhhIG1hdGVyaWFsIHF1ZSB2b2PDqiBuw6NvIHBvc3N1aSBhIHRpdHVsYXJpZGFkZSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMsIHZvY8OqIGRlY2xhcmEgcXVlIG9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciDDoCBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlw7pkbyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gb3JhIGRlcG9zaXRhZGEuCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSBVTklWRVJTSURBREUsIFZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIFRBTULDiU0gQVMgREVNQUlTIE9CUklHQcOHw5VFUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4K
dc.title.por.fl_str_mv Condutância em nanofios magnéticos diluídos
dc.title.alternative.por.fl_str_mv Conductancia in nanowires of magnetic diluited
title Condutância em nanofios magnéticos diluídos
spellingShingle Condutância em nanofios magnéticos diluídos
Mendes, Udson Cabra
Nanofios magnéticos
Condutância
Magnetic nanowires
Conductance
CIENCIAS EXATAS E DA TERRA::FISICA
title_short Condutância em nanofios magnéticos diluídos
title_full Condutância em nanofios magnéticos diluídos
title_fullStr Condutância em nanofios magnéticos diluídos
title_full_unstemmed Condutância em nanofios magnéticos diluídos
title_sort Condutância em nanofios magnéticos diluídos
author Mendes, Udson Cabra
author_facet Mendes, Udson Cabra
author_role author
dc.contributor.advisor1.fl_str_mv Avelar, Ardiley Torres
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5732286631137637
dc.contributor.advisor-co1.fl_str_mv Leão, Salvino de Araújo
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2549501479254454
dc.contributor.author.fl_str_mv Mendes, Udson Cabra
contributor_str_mv Avelar, Ardiley Torres
Leão, Salvino de Araújo
dc.subject.por.fl_str_mv Nanofios magnéticos
Condutância
topic Nanofios magnéticos
Condutância
Magnetic nanowires
Conductance
CIENCIAS EXATAS E DA TERRA::FISICA
dc.subject.eng.fl_str_mv Magnetic nanowires
Conductance
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::FISICA
description We investigate core-shell nanowires of diluted magnetic semiconductors (DMS) with remote n-type modulation doping. The incorporation of Mn2 ions acting as spin 5/2 impurities in the core region of the wire gives rise to a strong s-d exchange coupling between electrons in the wire and those of the d levels of the Mn2 ions. Applying an external magnetic eld along the axis of the wire, within the mean eld approximation, the s-d exchange generates a spin-dependent core potential. A gate voltage is applied radially to wire, to obtain some control over the density of the wire. Electronic strucutre of the wire was calculated within the e?ective mass approximation, in both approximations Hartree and spin density functional theory. We calculated the conductance of wire using the Landauer-B?uttiker formulation in the linear response regime, which generally results in a total conductance with well-de ned plateaus in GT = 2; 6; 10G0 (G0 = e2=h is the quanta of conductance), which occurred because in the system investigated the rst level is twofold degenerated (spin degenerescence) and the others are fourfold degenerated (spin degenerescence and orbital angular momentum). In the absence of a magnetic eld we observe that when we take into account the e?ects of exchange and correlation, the states with eigenvalues of Lz nonzero will be polarized while those with l = 0 isn't polarized. This unpolarized level with eigenvalue of Lz null suggests that, perhaps, the 0.7 anomaly (the emergence of two plateau at G = 0:7G0 and the other in G = G0) quantum wires on existing geometry of split-gate is related to the geometry of the wire. The results for total energy show that there are a competition between the ferromagnetic and paramagnetic states.
publishDate 2010
dc.date.issued.fl_str_mv 2010
dc.date.accessioned.fl_str_mv 2014-08-06T12:19:22Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MENDES, Udson Cabra. Condutância em nanofios magnéticos diluídos. 2010. 97 f. Dissertação ( Mestrado em Fisica) - Universidade Federal de Goiás, Goiânia.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tde/2888
dc.identifier.dark.fl_str_mv ark:/38995/001300000cc8h
identifier_str_mv MENDES, Udson Cabra. Condutância em nanofios magnéticos diluídos. 2010. 97 f. Dissertação ( Mestrado em Fisica) - Universidade Federal de Goiás, Goiânia.
ark:/38995/001300000cc8h
url http://repositorio.bc.ufg.br/tede/handle/tde/2888
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 3162138865744262028
dc.relation.confidence.fl_str_mv 600
600
600
600
600
dc.relation.department.fl_str_mv -4029658853652049306
dc.relation.cnpq.fl_str_mv -8327146296503745929
dc.relation.sponsorship.fl_str_mv 2075167498588264571
-2555911436985713659
dc.relation.references.por.fl_str_mv [1] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. Von Moln ́ar, M. L. Roukes, A. Y. Chtchelkanova, e D. M. Treger. Spintronics: A Spin-Based Electronics Vision for the Future. Science, 294, 1488, 2001. [2] D. D. Awschalom e M. E. Flatt ́e. Challenges for semiconductor spintronics. Nature Physics, 3, 153–159, 2007. [3] Y. K. Kato, R. C. Myers, A. C. Gossard, e D. D. Awschalom. Observation of the Spin Hall Effect in Semiconductors. Science, 304, 1910, 2004. [4] W. P. McCray. MBE deserves a place in the history books. Nature Nanotechnology, 2, 259, 2007. [5] T. Dieti, D. D. Awschalom, M. Kaminska, e H. Ohno. Spintronics and Semimetals. Elsevier, 2008. [6] M. N. Baibich, J. M. Broto, A. Fert, F. Nguyen Van Dau, F. Petroff, P. Etienne, G. Creuzet, A. Friederich, e J. Chazelas. Giant Magnetoresistance of (001)Fe/(001)Cr Magnetic Super- lattices. Phys. Rev. Lett., 61, 2472, 1988. [7] G. Binasch, P. Gr ̈unberg, F. Saurenbach, e W. Zinn. Enhanced magnetoresistance in layered magnetic structures with antiferromagnetic interlayer exchange. Phys. Rev. B, 39, 4828, 1989. [8] W. P. McCray. How spintronics went from the lab to the iPod. Nature Nanotechology, 4, 2, 2009. [9] J. Nitta, T. Akazaki, H. Takayanagi, e T. Enoki. Gate Control of Spin-Orbit Interaction in an Inverted In0.53Ga0.47As/In0.52Al0.48As Heterostructure. Phys. Rev. Lett, 78, 1335, 1997. [10] S. Datta e B. Das. Eletronic analog of the electro-optic modulator. Appl. Phys. Lett., 56, 665, 1990. [11] Hyun Cheol Koo, Jae Hyun Kwon, Jonghwa Eom, Joonyeon Chang, Suk Hee Han, e Mark Johnson. Control of Spin Precession in a Spin-Injected Field Effect Transistor. Science, 325, 1515, 2009. BIBLIOGRAFIA 79 [12] D. Chiba, M. Sawicki, Y. Nishitani, Y. Nakatani, F. Matsukura, e H. Ohno. Magnetization vector manipulation by electric fields. Nature, 455, 515, 2008. [13] J. K. Furdyna. Diluted magnetic semiconductors. J. Appl. Phys., 64, R29, 1988. [14] T. Dietl, H. Ohno, F. Matsukura, J. Cibert, e D. Ferrand. Zener Model Description of Ferromagnetism in Zinc-Blende Magnetic Semiconductors. Science, 287, 1019, 2000. [15] M. Goryca, D. Ferrand, P. Kossacki, M. Nawrocki, W. Pacuski, W. Ma ́slana, J. A. Gaj, S. Tatarenko, J. Cibert, T. Wojtowicz, e G. Karczewski. Magnetization Dynamics Down to a Zero Field in Dilute (Cd,Mn)Te QuantumWells. Phys. Rev. Lett., 102, 046408, 2009. [16] C. Gould, A. Slobodskyy, D. Supp, T. Slobodskyy, P. Grabs, P. Hawrylak, F. Qu, G. Schmidt, e L.W. Molenkamp. Remanent Zero Field Spin Splitting of Self-Assembled Quantum Dots in a Paramagnetic Host. Phys. Rev. Lett., 97, 017202, 2006. [17] R. M. Abolfath, P. Hawrylak, e I. Zuti ́c. Tailoring Magnetism in Quantum Dots. Phys. Rev. Lett., 98, 207203, 2007. [18] W. Zaleszczyk, E. Janik, A. Presz, P. Dtu ́zewski, S. Kret, W. Szuszkiewicz, J. F. Morhange, E. Dynowska, H. Kirmse, W. Neumann, A. Petroutchik, L. T. Baczewski, G. Karczewski, e T. Wojtowicz. Zn1−xMnxTe Diluted Magnetic Semiconductor Nanowires Grown by Molecular Beam Epitaxy. Nano Lett., 8, 4061, 2008. [19] B. J. van Wees, H. van Houten, C. W. J. Beenakker, J. G. Williamson, L. P. Kouwen- hoven, D. van der Marel, e C. T. Foxon. Quantized conductance of point contacts in a two-dimensional electron gas. Phys. Rev. Lett, 60, 848, 1988. [20] D A Wharam, T J Thornton, R Newbury, M Pepper, H Ahmed, J E F Frost, D G Hasko, D C Peacock, D A Ritchie, e G A C Jones. One-dimensional transport and the quantisation of the ballistic resistance. J. Phsy. C, 21, L209, 1988. [21] I. A. Shelykh, M. Rosenau da Costa, e A. C. Seridonio. Fractional quantization of ballistic conductance in 1D electron and hole systems. J. Phys.: Condens. Matter, 20, 164214, 2008. [22] T. P. Martin, A. Szorkovszky, A. P. Micolich, A. R. Hamilton, C. A. Marlow, R. P. Taylor, H. Linke, e H. Q. Xu. Field-orientation dependence of the Zeeman spin splitting in (In,Ga)As quantum point contacts. Phys. Rev. B, 81, 041303(R), 2010. [23] K. J. Thomas, J. T. Nicholls, M. Y. Simmons, M. Pepper, D. R. Mace, e D. A. Ritchie. Possible Spin Polarization in a One-Dimensional Electron Gas. Phys. Rev. Lett., 77, 135, 1996. BIBLIOGRAFIA 80 [24] A. A. Starikov, I. I. Yakimenko, e K. F. Berggren. Scenario for the 0.7-conductance anomaly in quantum point contacts. Phys. Rev. B, 67, 235319, 2003. [25] G. A. Fiete. Colloquium: The spin-incoherent Luttinger liquid. Rev. Mod. Phys., 79, 801, 2007. [26] Supriyo Datta. Eletronic Transport in Mesoscopic Systems. Cambridge Studies in Semicon- ductor Physics and Microelectronic Engineering. Cambridge University Press, 1995. [27] J. D. M. Vianna, A. Fazzio, e S. Canuto. Teoria Quˆantica de Mol ́eculas e S ́olidos: Simula ̧c ̃ao Computacional. Editora da Livraria da F ́ısica, 2004. [28] P. Hohenberg e W. Kohn. Inhomogeneous electron gas. Phys. Rev., 136, 864, 1964. [29] W. Kohn e L. J. Sham. Self-consistent equations including exchange and correlation effects. Phys. Rev., 140, 1133, 1965. [30] J. A. Gaj, R. Planel, e F. Fishman. Relation of magneto-optical properties of free excitons to spin alignment of Mn2+ ions in Cd1−xMnxTe. Solid State Commun., 29, 435, 1979. [31] J. A. Gaj, W. Grieshaber, C. Bodin-Deshayes, J. Cibert, G. Feuillet, Y. Merle d’Aubign ́e, e A. Wasiela. Magneto-Optical study of interface mixing in the CdTe-(Cd,Mn)Te system. Phys. Rev. B, 50, 5512, 1994. [32] W. Grieshaber, A. Haury, J. Cibert, Y. Merle d’Aubign ́e, e A. Wasiela. Magneto-optic study of the interface in semimagnetic semiconductor heterostructures: Intrinsic effect and interface profile in CdTe-Cd1−xMnxTe. Phys. Rev. B, 53, 4891, 1996. [33] P. Kossacki, H. Boukari, M. Bertolini, D. Ferrand, J. Cibert, S. Tatarenko, J. A. Gaj, B. Deveaud, V. Ciulin, e M. Potemski. Photoluminescence of p-doped quantum wells with strong spin splitting. Phys. Rev. B, 70, 195337, 2004. [34] D. K. Ferry e S. M. Goodnick. Transport in Nanostructures. Cambridge Studies in Semi- conductor Physics and Microelectronic Engineering. Cambridge University Press, 2000. [35] X. Aymerich-Humet, F. Serra-Mestres, e J. Mill ́an. A generalized approximation of the Fermi-Dirac Integrals. J. Appl. Phys., 4, 2850, 1983. [36] M. Goano. Series expansion of the Fermi-Dirac Integral Fj (x) over the entire domain of real j and x. Solid-State Electronics, 36, 217, 1993. [37] H. S. Vosko, L. Wilk, e M. Nusair. Acurrate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis. Can. J. Phys., 58, 1200–1211, 1980. [38] Philip L. Taylor e Olle Heinonen. A Quantum Approach to Condensed Matter Physics. CambridgeUniversity Press, 2002. [39] D. Kosloff e R. Kosloff. A Fourier method solution for the time dependent Schr ̈odinger equation as a tool in molecular dynamics. J. Phys. Chem., 52, 35, 1983. [40] R. Kosloff. Time-dependent quantum-mechanical methods for molecular dynamics. J. Phys. Chem., 92, 2087, 1988. [41] M. H. Degani e J. P. Leburton. Single-electron states and conductance in lateral-surface superlattices. Phys. Rev. B, 44, 10901, 1991. [42] M. H. Degani. Stark ladders in strongly coupled GaAs-AlAs superlattices. Appl. Phys. Lett., 59, 57, 1991. [43] M. H. Degani. Electron energy levels in a δ-doped layers in GaAs. Phys. Rev. B, 44, 5580, 1991. [44] M. H. Degani. Electronic properties of multiple Si δ-doping in GaAs. J. Appl. Phys., 70, 4362, 1991. [45] P. L. DeVries. A First Course in Computational Physics. Wiley, New York, 1993. [46] M. B ̈uttiker. Quantized transmission of a saddle-point constriction. Phsy.Rev. B, 41, 7906, 1990. [47] J. P. Perdew e Mel Levy. Extrema of the functional for the energy: Excited states form ground-state theory. Phys. Rev. B, 31, 6264, 1985. [48] Filipe Sammarco. Magnetocondutˆancia de fios quˆanticos interagentes. Disserta ̧c ̃ao de Mestrado, Instituto de F ́ısica de S ̃ao Carlos - USP, 2009.
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Fisica (IF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Física - IF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/dc7c367b-9f0e-4551-b8f8-e8bc24608a6e/download
http://repositorio.bc.ufg.br/tede/bitstreams/c254db47-e206-404c-829a-158fc6084daa/download
http://repositorio.bc.ufg.br/tede/bitstreams/6e9fa4af-ad5b-4bcf-a85b-537500473f91/download
http://repositorio.bc.ufg.br/tede/bitstreams/deafe21f-1869-49b3-8b7a-31b31e534eda/download
http://repositorio.bc.ufg.br/tede/bitstreams/6b185a55-7737-4a73-9b52-217ead724560/download
http://repositorio.bc.ufg.br/tede/bitstreams/5b3d2c33-979e-458e-98b7-4cfeb8fff54f/download
http://repositorio.bc.ufg.br/tede/bitstreams/3e95a7d5-8b7d-42bf-92dc-c8ac452f1b67/download
bitstream.checksum.fl_str_mv 0c5126468995368f097978ee97cb41f5
232e528055260031f4e2af4136033daa
4afdbb8c545fd630ea7db775da747b2f
9833653f73f7853880c94a6fead477b1
9da0b6dfac957114c6a7714714b86306
7e6ce949537ecd9645d4485dcbc9c576
a69f187f360f1d499edc624ce239dd66
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172631195811840