Geometria extrínseca de campos de vetores em R3
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/00130000046s1 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/8636 |
Resumo: | In this work we first consider regular vector fields : R3 ! R3 and its orthogonal distribution of planes. We present a characterization of the normal curvature associated to and the system of implicit differential equations 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; which define two one-dimensional singular and orthogonal foliations, which we call by principal foliations and whose leaves are the principal lines of the distribution . Next we describe the configurations of the principal foliations in a neighborhood of the generic singular points that constitutes a regular curve in R3, which are denoted by Darbouxian umbilic partially points and semi-Darbouxian. We proceed by studying the stability of the closed principal lines and we also present a Kupka- Smale genericity result. To conclude, we study the structure of the singularities of the principal foliations in a neighborhood of a singular hyperbolic point of the vector field . |
id |
UFG-2_a7e17cc2b96efa62048664309bf11e65 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/8636 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Garcia, Ronaldo Alveshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787335Z3Garcia, Ronaldo AlvesTello, Jorge Manuel SotomayorMello, Luis Fernando de osorioTari, faridCarneiro, Mario Jorge Diashttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4794702D2Gomes, Alacy José2018-07-03T15:20:24Z2016-05-13GOMES, Alacy José. Geometria extrínseca de campos de vetores em R3. 2016. 128 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2016.http://repositorio.bc.ufg.br/tede/handle/tede/8636ark:/38995/00130000046s1In this work we first consider regular vector fields : R3 ! R3 and its orthogonal distribution of planes. We present a characterization of the normal curvature associated to and the system of implicit differential equations 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; which define two one-dimensional singular and orthogonal foliations, which we call by principal foliations and whose leaves are the principal lines of the distribution . Next we describe the configurations of the principal foliations in a neighborhood of the generic singular points that constitutes a regular curve in R3, which are denoted by Darbouxian umbilic partially points and semi-Darbouxian. We proceed by studying the stability of the closed principal lines and we also present a Kupka- Smale genericity result. To conclude, we study the structure of the singularities of the principal foliations in a neighborhood of a singular hyperbolic point of the vector field .Neste trabalho consideramos inicialmente campos de vetores regulares : R3 ! R3 e sua distribuições ortogonais de planos . Apresentamos uma caracterização da curvatura normal associada a e do sistema de equações diferenciais implícitas, 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; que definem duas folheações unidimensionais singulares e ortogonais, denominadas de folheações principais e cujas folhas são as linhas principais da distribuição . A seguir descrevemos as configurações das folheações principais, numa vizinhança dos pontos singulares genéricos que constituem uma curva regular em R3, denominados de pontos parcialmente umbílicos Darbouxianos e semi-Darbouxianos. Depois estudamos a estabilidade das linhas principais fechadas e apresentamos também um resultado de genericidade do tipo Kupka-Smale. Na parte final, estudamos a estrutura dos pontos singulares das folheações principais na vizinhança de um ponto singular hiperbólico do campo de vetores .Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2018-06-29T19:22:20Z No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-07-03T15:20:24Z (GMT) No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-07-03T15:20:24Z (GMT). No. of bitstreams: 2 Tese- Alaciy José Gomes - 2016.pdf: 5745946 bytes, checksum: d980380f3722151dde3e85c3a179ecf8 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-13application/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessCampos de vetoresDistribuição de planosEquações diferenciais implícitasPontos parcialmente umbílicosLinhas principaisVector fieldsPlane distributionImplicit differential equationsPartially umbilic pointsPrincipal linesCIENCIAS EXATAS E DA TERRA::MATEMATICAGeometria extrínseca de campos de vetores em R3Extrinsic geometry of vector fields in R3info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600-4268777512335152015-7090823417984401694reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALTese- Alaciy José Gomes - 2016.pdfTese- Alaciy José Gomes - 2016.pdfapplication/pdf5745946http://repositorio.bc.ufg.br/tede/bitstreams/417b2931-17af-4656-8469-d54233ed75a7/downloadd980380f3722151dde3e85c3a179ecf8MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/01422983-f145-41f7-b113-787e4a44bb9b/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/2461c2c0-e560-496e-9924-04693889f2bf/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/f8de6285-3693-4573-b932-207e4661f36b/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/5854e7b2-2efd-4284-9343-c45a7ead3674/downloadd41d8cd98f00b204e9800998ecf8427eMD54tede/86362018-07-03 12:20:24.114http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8636http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2018-07-03T15:20:24Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Geometria extrínseca de campos de vetores em R3 |
dc.title.alternative.eng.fl_str_mv |
Extrinsic geometry of vector fields in R3 |
title |
Geometria extrínseca de campos de vetores em R3 |
spellingShingle |
Geometria extrínseca de campos de vetores em R3 Gomes, Alacy José Campos de vetores Distribuição de planos Equações diferenciais implícitas Pontos parcialmente umbílicos Linhas principais Vector fields Plane distribution Implicit differential equations Partially umbilic points Principal lines CIENCIAS EXATAS E DA TERRA::MATEMATICA |
title_short |
Geometria extrínseca de campos de vetores em R3 |
title_full |
Geometria extrínseca de campos de vetores em R3 |
title_fullStr |
Geometria extrínseca de campos de vetores em R3 |
title_full_unstemmed |
Geometria extrínseca de campos de vetores em R3 |
title_sort |
Geometria extrínseca de campos de vetores em R3 |
author |
Gomes, Alacy José |
author_facet |
Gomes, Alacy José |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Garcia, Ronaldo Alves |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4787335Z3 |
dc.contributor.referee1.fl_str_mv |
Garcia, Ronaldo Alves |
dc.contributor.referee2.fl_str_mv |
Tello, Jorge Manuel Sotomayor |
dc.contributor.referee3.fl_str_mv |
Mello, Luis Fernando de osorio |
dc.contributor.referee4.fl_str_mv |
Tari, farid |
dc.contributor.referee5.fl_str_mv |
Carneiro, Mario Jorge Dias |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4794702D2 |
dc.contributor.author.fl_str_mv |
Gomes, Alacy José |
contributor_str_mv |
Garcia, Ronaldo Alves Garcia, Ronaldo Alves Tello, Jorge Manuel Sotomayor Mello, Luis Fernando de osorio Tari, farid Carneiro, Mario Jorge Dias |
dc.subject.por.fl_str_mv |
Campos de vetores Distribuição de planos Equações diferenciais implícitas Pontos parcialmente umbílicos Linhas principais |
topic |
Campos de vetores Distribuição de planos Equações diferenciais implícitas Pontos parcialmente umbílicos Linhas principais Vector fields Plane distribution Implicit differential equations Partially umbilic points Principal lines CIENCIAS EXATAS E DA TERRA::MATEMATICA |
dc.subject.eng.fl_str_mv |
Vector fields Plane distribution Implicit differential equations Partially umbilic points Principal lines |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::MATEMATICA |
description |
In this work we first consider regular vector fields : R3 ! R3 and its orthogonal distribution of planes. We present a characterization of the normal curvature associated to and the system of implicit differential equations 2(D (dr); dr; ) + h rot( ); i hdr; dri = 0; hdr; i = 0; which define two one-dimensional singular and orthogonal foliations, which we call by principal foliations and whose leaves are the principal lines of the distribution . Next we describe the configurations of the principal foliations in a neighborhood of the generic singular points that constitutes a regular curve in R3, which are denoted by Darbouxian umbilic partially points and semi-Darbouxian. We proceed by studying the stability of the closed principal lines and we also present a Kupka- Smale genericity result. To conclude, we study the structure of the singularities of the principal foliations in a neighborhood of a singular hyperbolic point of the vector field . |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-05-13 |
dc.date.accessioned.fl_str_mv |
2018-07-03T15:20:24Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
GOMES, Alacy José. Geometria extrínseca de campos de vetores em R3. 2016. 128 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2016. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/8636 |
dc.identifier.dark.fl_str_mv |
ark:/38995/00130000046s1 |
identifier_str_mv |
GOMES, Alacy José. Geometria extrínseca de campos de vetores em R3. 2016. 128 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2016. ark:/38995/00130000046s1 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/8636 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
-7090823417984401694 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/417b2931-17af-4656-8469-d54233ed75a7/download http://repositorio.bc.ufg.br/tede/bitstreams/01422983-f145-41f7-b113-787e4a44bb9b/download http://repositorio.bc.ufg.br/tede/bitstreams/2461c2c0-e560-496e-9924-04693889f2bf/download http://repositorio.bc.ufg.br/tede/bitstreams/f8de6285-3693-4573-b932-207e4661f36b/download http://repositorio.bc.ufg.br/tede/bitstreams/5854e7b2-2efd-4284-9343-c45a7ead3674/download |
bitstream.checksum.fl_str_mv |
d980380f3722151dde3e85c3a179ecf8 bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172554292199424 |