Magnetohipertermia em nanopartículas core-shell

Detalhes bibliográficos
Autor(a) principal: Santos, Marcus Carrião dos
Data de Publicação: 2016
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/00130000095b4
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/6272
Resumo: The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. The scientific community has endeavored to identify the properties that lead to maximum efficiency dissipation of magnetic nanoparticles. However, the diameter in which this efficiency reaches maximum is sometimes bigger than 10 nm, presenting several incompatibilities with biomedical aplications. On the other hand, small nanoparticles (< 8 nm}) do not suffer from the same disadvantages. On the contrary, they benefit from a biodistribution convenient for cancer treatment, affinity for the lymphatic system, further penetration of tumor tissue and renal clearance. However, the use of small nanostructures as heat centers never received much attention, in part because the model most used to describe the magnetic hyperthermia phenomenon, the linear response theory (LRT), provides a very small dissipation in these systems. Recently, experimental results have questioned this inefficiency and evidences that it is possible to produce a biological response (including cell death) without necessarily measuring a temperature variation opened up new possibilities for small nanostructures. This research, therefore, proposes a change in magnetic nanostructure tailoring strategy for biomedical applications of hyperthermia: to make more efficient dissipation in small nanoparticles. Therefore, it is necessary to rebuild the theoretical framework of hyperthermia, making the description of these small systems more accurate. This thesis deals with the development of modeling tools to enable a distinction between the most superficial and internal region of the nanoparticle, recognizing that many of the properties at the nanoscale has its origin in surface effects and the surface-to-volume ratio. A model for the description of core-shell system magnetization was developed, based on the Heisenberg Hamiltonian and a mean field theory in which different parameters may be assigned to each region. The combination of this model with the LRT has given rise to a new description of hyperthermia phenomenon in which the importance of surface effects and can be explicitly considered, making also possible the description of heterogeneous systems. The model was compared with original (homogeneous nanoparticles) and literature (heterogeneous nanoparticles) experimental data, with good qualitative agreement with the results. In an attempt to verify the influence of effects of nonlinearity in these systems, a non-linear response theory was developed from the generalization of the LRT, and applied to core-shell systems. The fundamental role of these theoretical tools is to point the direction in which the nanomaterials tailoring should advance to make viable the proposed hyperthermia with small nanostructures. The models proposed here suggest that a higher dissipation efficiency in small systems is obtained with a combination of materials which lead to the reduction ratio of shell-to-core damping factors, increasing of the exchange constant in the interface and maximizing the shell-to-core anisotropy constants, indicating that better results should be found in Soft@Hard systems.
id UFG-2_acb09d5127f502e96af211d521d9bf30
oai_identifier_str oai:repositorio.bc.ufg.br:tede/6272
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Bakuzis, Andris Figueiroahttp://lattes.cnpq.br/3477269475651042Bakuzis, Andris FigueiroaKnobel, MarceloJadim, Renato de F.Silva, Hermann F. F. Lima ePelegrini, Fernandohttp://lattes.cnpq.br/2377857407143983Santos, Marcus Carrião dos2016-09-26T12:06:45Z2016-05-04CARRIAO, M. S. Magnetohipertermia em nanopartículas core-shell. 2016. 125 f. Tese (Doutorado em Fisica) - Universidade Federal de Goiás, Goiânia, 2016.http://repositorio.bc.ufg.br/tede/handle/tede/6272ark:/38995/00130000095b4The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. The scientific community has endeavored to identify the properties that lead to maximum efficiency dissipation of magnetic nanoparticles. However, the diameter in which this efficiency reaches maximum is sometimes bigger than 10 nm, presenting several incompatibilities with biomedical aplications. On the other hand, small nanoparticles (< 8 nm}) do not suffer from the same disadvantages. On the contrary, they benefit from a biodistribution convenient for cancer treatment, affinity for the lymphatic system, further penetration of tumor tissue and renal clearance. However, the use of small nanostructures as heat centers never received much attention, in part because the model most used to describe the magnetic hyperthermia phenomenon, the linear response theory (LRT), provides a very small dissipation in these systems. Recently, experimental results have questioned this inefficiency and evidences that it is possible to produce a biological response (including cell death) without necessarily measuring a temperature variation opened up new possibilities for small nanostructures. This research, therefore, proposes a change in magnetic nanostructure tailoring strategy for biomedical applications of hyperthermia: to make more efficient dissipation in small nanoparticles. Therefore, it is necessary to rebuild the theoretical framework of hyperthermia, making the description of these small systems more accurate. This thesis deals with the development of modeling tools to enable a distinction between the most superficial and internal region of the nanoparticle, recognizing that many of the properties at the nanoscale has its origin in surface effects and the surface-to-volume ratio. A model for the description of core-shell system magnetization was developed, based on the Heisenberg Hamiltonian and a mean field theory in which different parameters may be assigned to each region. The combination of this model with the LRT has given rise to a new description of hyperthermia phenomenon in which the importance of surface effects and can be explicitly considered, making also possible the description of heterogeneous systems. The model was compared with original (homogeneous nanoparticles) and literature (heterogeneous nanoparticles) experimental data, with good qualitative agreement with the results. In an attempt to verify the influence of effects of nonlinearity in these systems, a non-linear response theory was developed from the generalization of the LRT, and applied to core-shell systems. The fundamental role of these theoretical tools is to point the direction in which the nanomaterials tailoring should advance to make viable the proposed hyperthermia with small nanostructures. The models proposed here suggest that a higher dissipation efficiency in small systems is obtained with a combination of materials which lead to the reduction ratio of shell-to-core damping factors, increasing of the exchange constant in the interface and maximizing the shell-to-core anisotropy constants, indicating that better results should be found in Soft@Hard systems.O fenômeno de dissipação de calor por materiais magnéticos que interagem com um campo magnético alternado, conhecido como hipertermia magnética, é uma emergente e promissora terapia para muitas doenças, principalmente o câncer. A comunidade científica tem se esforçado para identificar as propriedades que levam à eficiência máxima de dissipação em nanopartículas magnéticas. Entretanto, muitas vezes, o diâmetro para o qual essa eficiência é máxima supera 10 nm, apresentando diversas incompatibilidades com as aplicações biomédicas. Por outro lado, nanopartículas pequenas (< 8 nm) não sofrem das mesmas desvantagens, pelo contrário, se beneficiam de uma biodistribuição conveniente para o tratamento oncológico, afinidade com o sistema linfático, maior penetração no tecido tumoral e excreção via depuração renal. Entretanto, o uso de nanoestruturas pequenas como centros de calor nunca recebeu muita atenção, em parte, porque o modelo mais utilizado para descrever o fenômeno de hipertermia magnética, a teoria de resposta linear (LRT), prevê uma dissipação muito pequena nesses sistemas. Recentemente, resultados experimentais colocaram em dúvida essa ineficiência e evidências de que é possível produzir uma resposta biológica (inclusive morte celular) sem necessariamente elevar a temperatura de forma mensurável abriram novas possibilidades para as nanoestruturas pequenas. Esse trabalho propõe, então, uma mudança na estratégia de engenharia de nanoestruturas magnéticas para aplicações biomédicas de hipertermia: que se busque tornar mais eficiente a dissipação em nanopartículas pequenas. Para tanto, é necessário reconstruir o arcabouço teórico de hipertermia, para tornar a descrição desses sistemas pequenos mais precisa. Esta tese ocupa-se do desenvolvimento de ferramentas de modelagem que permitam uma diferenciação entre a região mais superficial e interna da nanopartícula, reconhecendo que grande parte das propriedades em escala nanométrica tem sua origem nos efeitos de superfície e na relação superfície-volume. Um modelo de descrição da magnetização de sistemas core-shell foi desenvolvido, com base na hamiltoniana de Heisenberg e em uma teoria de campo médio, no qual podem ser atribuídos diferentes parâmetros para cada uma dessas regiões. A combinação desse modelo com a LRT deu origem a uma nova descrição do fenômeno de hipertermia no qual a importância de efeitos de superfície podem ser explicitamente considerados, tornando possível também a descrição de sistemas heterogêneos. O modelo foi comparado com dados experimentais originais (nanopartículas homogêneas) e da literatura (nanopartículas heterogêneas), apresentando boa concordância qualitativa com os resultados. Na tentativa de verificar a influência de efeitos de não-linearidade nesses sistemas, desenvolveu-se uma teoria de resposta não-linear a partir da generalização da LRT, aplicando-a a sistemas core-shell. O papel fundamental dessas ferramentas teóricas é apontar a direção para qual a engenharia de nanomateriais deve avançar para tornar a proposta de hipertermia com nanoestruturas pequenas viável. Os modelos propostos aqui sugerem que a maior eficiência de dissipação em sistemas pequenos será obtida com a combinação de materiais que levem à redução da razão entre os fatores de damping da shell com relação ao core, o aumento da constante de exchange na interface e a maximização da razão entre as constantes de anisotropia da shell com relação ao core, indicando melhores resultados para sistemas Soft@Hard.Submitted by Cássia Santos (cassia.bcufg@gmail.com) on 2016-09-26T11:37:12Z No. of bitstreams: 2 Tese - Marcus Carrião dos Santos - 2016.pdf: 18819776 bytes, checksum: c30d69dcb666acd99ab25efc73f7a96e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2016-09-26T12:06:45Z (GMT) No. of bitstreams: 2 Tese - Marcus Carrião dos Santos - 2016.pdf: 18819776 bytes, checksum: c30d69dcb666acd99ab25efc73f7a96e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2016-09-26T12:06:45Z (GMT). No. of bitstreams: 2 Tese - Marcus Carrião dos Santos - 2016.pdf: 18819776 bytes, checksum: c30d69dcb666acd99ab25efc73f7a96e (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-05-04Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Fisica (IF)UFGBrasilInstituto de Física - IF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessHipertermia magnéticaNanobiomagnetismoMagnetic hyperthermiaNanobiomagnetismFISICA::FISICA GERALMagnetohipertermia em nanopartículas core-shellMagnetohyperthermia in core-shell nanoparticlesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis3162138865744262028600600600600-40296588536520493064652787352762697830-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/c586be20-2a55-46dd-bcf9-a5ea3f05cf14/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/2c2bdb83-f1fe-4f33-b173-f50836de5f75/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/cdb389a1-93f5-4a81-8ddc-c14d6e2f0911/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/a70db66a-fe99-4296-9ef8-f6b77bcdb79f/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Marcus Carrião dos Santos - 2016.pdfTese - Marcus Carrião dos Santos - 2016.pdfapplication/pdf18819776http://repositorio.bc.ufg.br/tede/bitstreams/481eb26f-6428-442f-8ee4-b568526ace17/downloadc30d69dcb666acd99ab25efc73f7a96eMD55tede/62722016-09-26 09:06:45.896http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/6272http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2016-09-26T12:06:45Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Magnetohipertermia em nanopartículas core-shell
dc.title.alternative.eng.fl_str_mv Magnetohyperthermia in core-shell nanoparticles
title Magnetohipertermia em nanopartículas core-shell
spellingShingle Magnetohipertermia em nanopartículas core-shell
Santos, Marcus Carrião dos
Hipertermia magnética
Nanobiomagnetismo
Magnetic hyperthermia
Nanobiomagnetism
FISICA::FISICA GERAL
title_short Magnetohipertermia em nanopartículas core-shell
title_full Magnetohipertermia em nanopartículas core-shell
title_fullStr Magnetohipertermia em nanopartículas core-shell
title_full_unstemmed Magnetohipertermia em nanopartículas core-shell
title_sort Magnetohipertermia em nanopartículas core-shell
author Santos, Marcus Carrião dos
author_facet Santos, Marcus Carrião dos
author_role author
dc.contributor.advisor1.fl_str_mv Bakuzis, Andris Figueiroa
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3477269475651042
dc.contributor.referee1.fl_str_mv Bakuzis, Andris Figueiroa
dc.contributor.referee2.fl_str_mv Knobel, Marcelo
dc.contributor.referee3.fl_str_mv Jadim, Renato de F.
dc.contributor.referee4.fl_str_mv Silva, Hermann F. F. Lima e
dc.contributor.referee5.fl_str_mv Pelegrini, Fernando
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2377857407143983
dc.contributor.author.fl_str_mv Santos, Marcus Carrião dos
contributor_str_mv Bakuzis, Andris Figueiroa
Bakuzis, Andris Figueiroa
Knobel, Marcelo
Jadim, Renato de F.
Silva, Hermann F. F. Lima e
Pelegrini, Fernando
dc.subject.por.fl_str_mv Hipertermia magnética
Nanobiomagnetismo
topic Hipertermia magnética
Nanobiomagnetismo
Magnetic hyperthermia
Nanobiomagnetism
FISICA::FISICA GERAL
dc.subject.eng.fl_str_mv Magnetic hyperthermia
Nanobiomagnetism
dc.subject.cnpq.fl_str_mv FISICA::FISICA GERAL
description The phenomenon of heat dissipation by magnetic materials interacting with an alternating magnetic field, known as magnetic hyperthermia, is an emergent and promising therapy for many diseases, mainly cancer. The scientific community has endeavored to identify the properties that lead to maximum efficiency dissipation of magnetic nanoparticles. However, the diameter in which this efficiency reaches maximum is sometimes bigger than 10 nm, presenting several incompatibilities with biomedical aplications. On the other hand, small nanoparticles (< 8 nm}) do not suffer from the same disadvantages. On the contrary, they benefit from a biodistribution convenient for cancer treatment, affinity for the lymphatic system, further penetration of tumor tissue and renal clearance. However, the use of small nanostructures as heat centers never received much attention, in part because the model most used to describe the magnetic hyperthermia phenomenon, the linear response theory (LRT), provides a very small dissipation in these systems. Recently, experimental results have questioned this inefficiency and evidences that it is possible to produce a biological response (including cell death) without necessarily measuring a temperature variation opened up new possibilities for small nanostructures. This research, therefore, proposes a change in magnetic nanostructure tailoring strategy for biomedical applications of hyperthermia: to make more efficient dissipation in small nanoparticles. Therefore, it is necessary to rebuild the theoretical framework of hyperthermia, making the description of these small systems more accurate. This thesis deals with the development of modeling tools to enable a distinction between the most superficial and internal region of the nanoparticle, recognizing that many of the properties at the nanoscale has its origin in surface effects and the surface-to-volume ratio. A model for the description of core-shell system magnetization was developed, based on the Heisenberg Hamiltonian and a mean field theory in which different parameters may be assigned to each region. The combination of this model with the LRT has given rise to a new description of hyperthermia phenomenon in which the importance of surface effects and can be explicitly considered, making also possible the description of heterogeneous systems. The model was compared with original (homogeneous nanoparticles) and literature (heterogeneous nanoparticles) experimental data, with good qualitative agreement with the results. In an attempt to verify the influence of effects of nonlinearity in these systems, a non-linear response theory was developed from the generalization of the LRT, and applied to core-shell systems. The fundamental role of these theoretical tools is to point the direction in which the nanomaterials tailoring should advance to make viable the proposed hyperthermia with small nanostructures. The models proposed here suggest that a higher dissipation efficiency in small systems is obtained with a combination of materials which lead to the reduction ratio of shell-to-core damping factors, increasing of the exchange constant in the interface and maximizing the shell-to-core anisotropy constants, indicating that better results should be found in Soft@Hard systems.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-09-26T12:06:45Z
dc.date.issued.fl_str_mv 2016-05-04
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CARRIAO, M. S. Magnetohipertermia em nanopartículas core-shell. 2016. 125 f. Tese (Doutorado em Fisica) - Universidade Federal de Goiás, Goiânia, 2016.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/6272
dc.identifier.dark.fl_str_mv ark:/38995/00130000095b4
identifier_str_mv CARRIAO, M. S. Magnetohipertermia em nanopartículas core-shell. 2016. 125 f. Tese (Doutorado em Fisica) - Universidade Federal de Goiás, Goiânia, 2016.
ark:/38995/00130000095b4
url http://repositorio.bc.ufg.br/tede/handle/tede/6272
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 3162138865744262028
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4029658853652049306
dc.relation.cnpq.fl_str_mv 4652787352762697830
dc.relation.sponsorship.fl_str_mv -2555911436985713659
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Fisica (IF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Física - IF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/c586be20-2a55-46dd-bcf9-a5ea3f05cf14/download
http://repositorio.bc.ufg.br/tede/bitstreams/2c2bdb83-f1fe-4f33-b173-f50836de5f75/download
http://repositorio.bc.ufg.br/tede/bitstreams/cdb389a1-93f5-4a81-8ddc-c14d6e2f0911/download
http://repositorio.bc.ufg.br/tede/bitstreams/a70db66a-fe99-4296-9ef8-f6b77bcdb79f/download
http://repositorio.bc.ufg.br/tede/bitstreams/481eb26f-6428-442f-8ee4-b568526ace17/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
c30d69dcb666acd99ab25efc73f7a96e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172608068419584