Atribuição de papéis em alguns produtos de grafos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/12185 |
Resumo: | During the pandemic, due to the new coronavirus (COVID-19), the use of social networks was enhanced by social distancing and the need to stay connected, generating a gigantic volume of data. In order to extract information, graphs constitute a powerful modeling tool in which the vertices represent individuals and the edges represent relationships between them. In 1991, Everett and Borgatti formalized the concept of role assignment under the name role coloring. Thus, a r-role assignment of a simple graph G is an assignment of r distinct roles to the vertices of G, such that two vertices with the same role have the same set of roles in the related vertices. Furthermore, a specific r-role assignment defines a role graph, in which the vertices are the distinct r roles, and there is an edge between two roles whenever there are two related vertices in the graph G that correspond to these roles. Research on role assignment and operations on graphs is scarce. We showed a dichotomy for the r-role assignment problem for the Cartesian product. While the Cartesian product of two graphs always admits a 2-role assignment, the problem remains NP-complete for any fixed r ≥ 3. The complementary prism arises from the complementary product, introduced by Haynes, Henning and Van Der Merwe in 2019, which is a generalization of the Cartesian product. Complementary prisms admits a 2-role assignment, with the exception of the complementary prism of a path with three vertices. We verified that the complementary prisms admits a 3-role assignment, with the exception of the complementary prism of some not connected bipartite graphs. Next, we showed that the related problem can be solved in linear time. Finally, we conjecture that, for r ≥ 3 the problem of (r+1)-role assignment to complementary prisms is NP-complete. In this sense, we consider the role graph K'_{1,r} which is the bipartite graph K_{1,r} with a loop at the vertex of degree r and we highlight that the problem of deciding whether a prism complement has a (r+1)-role assignment, when the role graph is K'_{1,r}, it is NP-complete. |
id |
UFG-2_b77969bb9e4e146c3b1098f716c33cb2 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/12185 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Castonguay, Dianehttp://lattes.cnpq.br/4005898623592261Dias, Elisângela Silvahttp://lattes.cnpq.br/0138908377103572Nascimento, Julliano Rosahttp://lattes.cnpq.br/8971175373328824Castonguay, DianeRodrigues, Rosiane de FreitasDourado, Mitre CostaNobrega, Diana SasakiSilva, Hebert Coelho dahttps://lattes.cnpq.br/3639678638834402Mesquita, Fernanda Neiva2022-07-18T12:59:32Z2022-07-18T12:59:32Z2022-06-24MESQUITA, F. N. Atribuição de papéis em alguns produtos de grafos. 2022. 130 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2022.http://repositorio.bc.ufg.br/tede/handle/tede/12185During the pandemic, due to the new coronavirus (COVID-19), the use of social networks was enhanced by social distancing and the need to stay connected, generating a gigantic volume of data. In order to extract information, graphs constitute a powerful modeling tool in which the vertices represent individuals and the edges represent relationships between them. In 1991, Everett and Borgatti formalized the concept of role assignment under the name role coloring. Thus, a r-role assignment of a simple graph G is an assignment of r distinct roles to the vertices of G, such that two vertices with the same role have the same set of roles in the related vertices. Furthermore, a specific r-role assignment defines a role graph, in which the vertices are the distinct r roles, and there is an edge between two roles whenever there are two related vertices in the graph G that correspond to these roles. Research on role assignment and operations on graphs is scarce. We showed a dichotomy for the r-role assignment problem for the Cartesian product. While the Cartesian product of two graphs always admits a 2-role assignment, the problem remains NP-complete for any fixed r ≥ 3. The complementary prism arises from the complementary product, introduced by Haynes, Henning and Van Der Merwe in 2019, which is a generalization of the Cartesian product. Complementary prisms admits a 2-role assignment, with the exception of the complementary prism of a path with three vertices. We verified that the complementary prisms admits a 3-role assignment, with the exception of the complementary prism of some not connected bipartite graphs. Next, we showed that the related problem can be solved in linear time. Finally, we conjecture that, for r ≥ 3 the problem of (r+1)-role assignment to complementary prisms is NP-complete. In this sense, we consider the role graph K'_{1,r} which is the bipartite graph K_{1,r} with a loop at the vertex of degree r and we highlight that the problem of deciding whether a prism complement has a (r+1)-role assignment, when the role graph is K'_{1,r}, it is NP-complete.Durante a pandemia, devido ao novo coronavírus (COVID-19), o uso das redes sociais foi po- tencializado pelo distanciamento social e a necessidade de se manter conectados, gerando um volume gigantesco de dados. A fim de extrair informações, os grafos constituem uma ferramenta de modelagem poderosa em que os vértices representam indivíduos e as arestas relações entre eles. Em 1991, Everett e Borgatti formalizaram o conceito de atribuição de papéis sob o nome de role coloring. Assim, uma r-atribuição de papéis de um grafo simples G é uma atribuição de r papéis distintos aos vértices de G, tal que, dois vértices com o mesmo papel têm o mesmo conjunto de papéis nos vértices relacionados. Além disso, uma r-atribuição de papéis específica define um grafo de papéis, no qual os vértices são os r papéis distintos, e existe uma aresta entre dois papéis sempre que há dois vértices relacionados no grafo G que correspondem a esses papéis. Pesquisas sobre atribuição de papéis e operações em grafos são escassas. Mostramos uma dicotomia para o problema de r-atribuição de papéis para o produto Cartesiano. Enquanto, o produto Cartesiano de dois grafos sempre admite uma 2- atribuição de papéis, o problema permanece NP-completo para qualquer r ≥ 3 fixo. O prisma complementar surge do produto complementar, introduzido por Haynes, Henning e Van Der Merwe em 2019, que é uma generalização do produto Cartesiano. Os prismas complementares admitem uma 2-atribuição de papéis, com exceção do prisma complementar de um caminho com três vértices. Verificamos que os prismas complementares admitem uma 3- atribuição de papéis, com exceção do prisma complementar de alguns grafos bipartidos. Em seguida, mostramos que o problema relacionado pode ser resolvido em tempo linear. Por último, conjeturamos que, para r ≥ 3, o problema de (r+1)-atribuição de papéis para prismas complementares é NP-completo. Neste sentido, consideramos o grafo de papéis K'_{1,r} que é o grafo bipartido K_{1,r} com laço no vértice de grau r e destacamos que o problema de decidir se um prisma complementar tem uma (r+1)-atribuição de papéis, quando o grafo de papéis é K'_{1,r}, é NP-completo.Submitted by Leandro Machado (leandromachado@ufg.br) on 2022-07-13T18:35:23Z No. of bitstreams: 2 Tese - Fernanda Neiva Mesquita - 2022.pdf: 2243804 bytes, checksum: 8a9f8493124f48e8541d48480839654a (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Rejected by Luciana Ferreira (lucgeral@gmail.com), reason: Pesquise se os dois co-orientadores possuem ORCID e lattes, pois não preencheu esses campos. on 2022-07-15T12:58:04Z (GMT)Submitted by Leandro Machado (leandromachado@ufg.br) on 2022-07-15T15:35:18Z No. of bitstreams: 2 Tese - Fernanda Neiva Mesquita - 2022.pdf: 2243804 bytes, checksum: 8a9f8493124f48e8541d48480839654a (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2022-07-18T12:59:32Z (GMT) No. of bitstreams: 2 Tese - Fernanda Neiva Mesquita - 2022.pdf: 2243804 bytes, checksum: 8a9f8493124f48e8541d48480839654a (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2022-07-18T12:59:32Z (GMT). No. of bitstreams: 2 Tese - Fernanda Neiva Mesquita - 2022.pdf: 2243804 bytes, checksum: 8a9f8493124f48e8541d48480839654a (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2022-06-24Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESFundação de Amparo à Pesquisa do Estado de GoiásporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAtribuição de papéisProduto cartesianoPrisma complementarRedes sociaisRole assignmentCartesian productComplementary prismSocial networksCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAOAtribuição de papéis em alguns produtos de grafosRole assignments in some product of graphinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis205005005005005002612613reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/d2d526ee-b25b-41e2-afe2-1584223cc112/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALTese - Fernanda Neiva Mesquita - 2022.pdfTese - Fernanda Neiva Mesquita - 2022.pdfapplication/pdf2243804http://repositorio.bc.ufg.br/tede/bitstreams/0376c02a-ccee-4642-ab6f-e0955c0ed554/download8a9f8493124f48e8541d48480839654aMD53LICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/84c03dcc-6418-4907-97b7-1c330edfabf1/download8a4605be74aa9ea9d79846c1fba20a33MD54tede/121852022-07-18 09:59:32.948http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/12185http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2022-07-18T12:59:32Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
Atribuição de papéis em alguns produtos de grafos |
dc.title.alternative.eng.fl_str_mv |
Role assignments in some product of graph |
title |
Atribuição de papéis em alguns produtos de grafos |
spellingShingle |
Atribuição de papéis em alguns produtos de grafos Mesquita, Fernanda Neiva Atribuição de papéis Produto cartesiano Prisma complementar Redes sociais Role assignment Cartesian product Complementary prism Social networks CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
title_short |
Atribuição de papéis em alguns produtos de grafos |
title_full |
Atribuição de papéis em alguns produtos de grafos |
title_fullStr |
Atribuição de papéis em alguns produtos de grafos |
title_full_unstemmed |
Atribuição de papéis em alguns produtos de grafos |
title_sort |
Atribuição de papéis em alguns produtos de grafos |
author |
Mesquita, Fernanda Neiva |
author_facet |
Mesquita, Fernanda Neiva |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Castonguay, Diane |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4005898623592261 |
dc.contributor.advisor-co1.fl_str_mv |
Dias, Elisângela Silva |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/0138908377103572 |
dc.contributor.advisor-co2.fl_str_mv |
Nascimento, Julliano Rosa |
dc.contributor.advisor-co2Lattes.fl_str_mv |
http://lattes.cnpq.br/8971175373328824 |
dc.contributor.referee1.fl_str_mv |
Castonguay, Diane |
dc.contributor.referee2.fl_str_mv |
Rodrigues, Rosiane de Freitas |
dc.contributor.referee3.fl_str_mv |
Dourado, Mitre Costa |
dc.contributor.referee4.fl_str_mv |
Nobrega, Diana Sasaki |
dc.contributor.referee5.fl_str_mv |
Silva, Hebert Coelho da |
dc.contributor.authorLattes.fl_str_mv |
https://lattes.cnpq.br/3639678638834402 |
dc.contributor.author.fl_str_mv |
Mesquita, Fernanda Neiva |
contributor_str_mv |
Castonguay, Diane Dias, Elisângela Silva Nascimento, Julliano Rosa Castonguay, Diane Rodrigues, Rosiane de Freitas Dourado, Mitre Costa Nobrega, Diana Sasaki Silva, Hebert Coelho da |
dc.subject.por.fl_str_mv |
Atribuição de papéis Produto cartesiano Prisma complementar Redes sociais |
topic |
Atribuição de papéis Produto cartesiano Prisma complementar Redes sociais Role assignment Cartesian product Complementary prism Social networks CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Role assignment Cartesian product Complementary prism Social networks |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::TEORIA DA COMPUTACAO |
description |
During the pandemic, due to the new coronavirus (COVID-19), the use of social networks was enhanced by social distancing and the need to stay connected, generating a gigantic volume of data. In order to extract information, graphs constitute a powerful modeling tool in which the vertices represent individuals and the edges represent relationships between them. In 1991, Everett and Borgatti formalized the concept of role assignment under the name role coloring. Thus, a r-role assignment of a simple graph G is an assignment of r distinct roles to the vertices of G, such that two vertices with the same role have the same set of roles in the related vertices. Furthermore, a specific r-role assignment defines a role graph, in which the vertices are the distinct r roles, and there is an edge between two roles whenever there are two related vertices in the graph G that correspond to these roles. Research on role assignment and operations on graphs is scarce. We showed a dichotomy for the r-role assignment problem for the Cartesian product. While the Cartesian product of two graphs always admits a 2-role assignment, the problem remains NP-complete for any fixed r ≥ 3. The complementary prism arises from the complementary product, introduced by Haynes, Henning and Van Der Merwe in 2019, which is a generalization of the Cartesian product. Complementary prisms admits a 2-role assignment, with the exception of the complementary prism of a path with three vertices. We verified that the complementary prisms admits a 3-role assignment, with the exception of the complementary prism of some not connected bipartite graphs. Next, we showed that the related problem can be solved in linear time. Finally, we conjecture that, for r ≥ 3 the problem of (r+1)-role assignment to complementary prisms is NP-complete. In this sense, we consider the role graph K'_{1,r} which is the bipartite graph K_{1,r} with a loop at the vertex of degree r and we highlight that the problem of deciding whether a prism complement has a (r+1)-role assignment, when the role graph is K'_{1,r}, it is NP-complete. |
publishDate |
2022 |
dc.date.accessioned.fl_str_mv |
2022-07-18T12:59:32Z |
dc.date.available.fl_str_mv |
2022-07-18T12:59:32Z |
dc.date.issued.fl_str_mv |
2022-06-24 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MESQUITA, F. N. Atribuição de papéis em alguns produtos de grafos. 2022. 130 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2022. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/12185 |
identifier_str_mv |
MESQUITA, F. N. Atribuição de papéis em alguns produtos de grafos. 2022. 130 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2022. |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/12185 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
20 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 500 |
dc.relation.department.fl_str_mv |
26 |
dc.relation.cnpq.fl_str_mv |
126 |
dc.relation.sponsorship.fl_str_mv |
1 3 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/d2d526ee-b25b-41e2-afe2-1584223cc112/download http://repositorio.bc.ufg.br/tede/bitstreams/0376c02a-ccee-4642-ab6f-e0955c0ed554/download http://repositorio.bc.ufg.br/tede/bitstreams/84c03dcc-6418-4907-97b7-1c330edfabf1/download |
bitstream.checksum.fl_str_mv |
4460e5956bc1d1639be9ae6146a50347 8a9f8493124f48e8541d48480839654a 8a4605be74aa9ea9d79846c1fba20a33 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1823229414989627392 |