Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos
Autor(a) principal: | |
---|---|
Data de Publicação: | 2012 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000796w |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/3119 |
Resumo: | An actinomycete strain, isolated from cane sugar bagasse (CSB), identified as Streptomyces sp was selected for its ability to produce cellulases. The production of cellulases was analyzed by submerged fermentation by cultivation on minimal medium (MM) containing CSB, wheat bran (WB) or carboxymethylcellulose (CMC) as carbon source, and yeast extract (YE) as nitrogen source. The results show that WB was the best inducer of CMCases (2.0 U.mL-1). Aiming to analyze the production of cellulases and xylanases kinetics, the isolate was inoculated in minimal medium containing 0.5% (w/v) WB and maintained for 12 days at 45°C under constant agitation of 180 rpm. The highest yield of Avicelase was observed after 264 h of cultivation (5.646 Uml-1), after 144 h for CMCase (3.872 Uml-1), after 144 h for FPase (0.0947 Uml-1) and after 288 h for Xylanase (92.40 Uml- 1). Culture supernatants with maximum activity of Avicelase, CMCase, Fpase and Xylanase were analyzed for optima pH and temperature of the respective enzymes. The highest enzyme activities were detected at pH 7.0 at 35°C for Avicelase, pH 4.5/75°C for CMCase, pH 5.5/45°Cfor FPase and pH 5.5/70°C for Xylanase. The enzymes retained more than 70% of the initial activity after 2 h incubation at 50°C. The profile proteins analyzed by zymogram demonstrated a set of secreted cellulases (37, 21 and 17 kDa) and xylanases (39, 21, 18 and 17 kDa) when grown on FT for 144 h. The saccharification assay with CSB as substrate showed that the enzyme complex was able to release 19% of glucose and 62.9% of xylose. |
id |
UFG-2_bbf3f047cb9ae30f6ef0f3e1cc934c5a |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/3119 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Bataus, Luiz Artur Mendeshttp://lattes.cnpq.br/3739169267521003http://lattes.cnpq.br/3556341716515132Cunha, Carolina Cândida de Queiroz Brito2014-09-22T19:09:30Z2012-10-27CUNHA, Carolina Cândida de Queiroz Brito. Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos. 2012. 99 f. Dissertação (Mestrado em Biologia) - Universidade Federal de Goiás, Goiânia, 2012.http://repositorio.bc.ufg.br/tede/handle/tede/3119ark:/38995/001300000796wAn actinomycete strain, isolated from cane sugar bagasse (CSB), identified as Streptomyces sp was selected for its ability to produce cellulases. The production of cellulases was analyzed by submerged fermentation by cultivation on minimal medium (MM) containing CSB, wheat bran (WB) or carboxymethylcellulose (CMC) as carbon source, and yeast extract (YE) as nitrogen source. The results show that WB was the best inducer of CMCases (2.0 U.mL-1). Aiming to analyze the production of cellulases and xylanases kinetics, the isolate was inoculated in minimal medium containing 0.5% (w/v) WB and maintained for 12 days at 45°C under constant agitation of 180 rpm. The highest yield of Avicelase was observed after 264 h of cultivation (5.646 Uml-1), after 144 h for CMCase (3.872 Uml-1), after 144 h for FPase (0.0947 Uml-1) and after 288 h for Xylanase (92.40 Uml- 1). Culture supernatants with maximum activity of Avicelase, CMCase, Fpase and Xylanase were analyzed for optima pH and temperature of the respective enzymes. The highest enzyme activities were detected at pH 7.0 at 35°C for Avicelase, pH 4.5/75°C for CMCase, pH 5.5/45°Cfor FPase and pH 5.5/70°C for Xylanase. The enzymes retained more than 70% of the initial activity after 2 h incubation at 50°C. The profile proteins analyzed by zymogram demonstrated a set of secreted cellulases (37, 21 and 17 kDa) and xylanases (39, 21, 18 and 17 kDa) when grown on FT for 144 h. The saccharification assay with CSB as substrate showed that the enzyme complex was able to release 19% of glucose and 62.9% of xylose.Uma linhagem de Actinomiceto, isolada do bagaço de cana-de-açúcar (BCA), identificada como Streptomyces sp foi selecionada pela sua capacidade de produzir celulases. A produção de celulases foi analisada por fermentação submersa (FS) pelo cultivo do isolado em meio mínimo (MM) contendo BCA, farelo de trigo (FT) ou carboximetilcelulose (CMC) como fonte de carbono, e extrato de levedura (EL) como fonte de nitrogênio. Os resultados demostraram que o FT foi o melhor indutor da produção de CMCases (2,0 U.mL-1). Com o objetivo de analisar a cinética de produção de celulases e xilanases pelo isolado, este foi inoculado em meio mínimo contendo 0,5% (w/v) FT e mantido por 12 dias a 45°C sob agitação constante de 180 rpm. A maior produção de Avicelase foi observada após 264 h de cultivo (5,646 UmL-1), de CMCase após 144 h (3,872 UmL-1), de FPase após 144 h (0,0947 UmL-1) e de Xilanase após 288 h (92,40 UmL-1). Os sobrenantes de cultura com atividade máxima de Avicelase, CMCase, FPase e Xilanase foram analisados quanto ao pH e temperatura ótimos das respectivas enzimas. Os resultados obtidos demonstraram que a maior atividade de Avicelase foi detectada em pH 7,0 a 35°C; CMCase apresentou melhor atividade em pH 4,5 a 75°C; FPase apresentou melhor atividade em pH 5,5 a 45°C e Xilanase apresentou melhor atividade em pH 5,5 a 70°C. Quanto à termoestabilidade, as enzimas presentes mantiveram mais de 70% da atividade inicial após 2 h de incubação a 50°C. O perfil de proteínas analisado por zimograma demonstrou que o isolado secretou um conjunto de celulases (37, 21 e 17 KDa) e xilanases (39, 21, 18 e 17 KDa) quando cultivado em FT por 144 h. No ensaio de sacarificação de BCA o complexo enzimático foi capaz de liberar 19% de glicose e 62,9% de xilose.Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-18T19:15:37Z No. of bitstreams: 2 Carolina C. de Queiroz Brito Cunha - 2012.pdf: 4678972 bytes, checksum: aa3da530028732bcbc87f49ba9ea6725 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Rejected by Luciana Ferreira (lucgeral@gmail.com), reason: Há problemas nos campos de palavras chaves e citação. Foi acrescentado da seguinte forma: Streptomyces - bagaço de cana. De acordo com as orientações seria: Streptomyces Bagaço de cana Foi acrescentado no campo de citação: Citação: Cunha, Carolina Cândida de Queiroz Brito - Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos - 2012 - 99 f. - Dissertação - Programa de Pós-graduação em Biologia (ICB) - Universidade Federal de Goiás - Goiânia, 2012. Deve-se usar a NBR6023, ex.: ALCÂNTARA, Guizelle Aparecida de. Caracterização farmacognostica e atividade antimicrobiana da folha e casca do caule da myrciarostratadc.(myrtaceae). 2012. 41 f. Dissertação (Mestrado em Ciências Farmacêuticas) - Universidade Federal de Goiás, Goiânia, 2012. on 2014-09-19T13:12:18Z (GMT)Submitted by Erika Demachki (erikademachki@gmail.com) on 2014-09-22T18:04:37Z No. of bitstreams: 2 Carolina C. de Queiroz Brito Cunha - 2012.pdf: 4678972 bytes, checksum: aa3da530028732bcbc87f49ba9ea6725 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Jaqueline Silva (jtas29@gmail.com) on 2014-09-22T19:09:30Z (GMT) No. of bitstreams: 2 Carolina C. de Queiroz Brito Cunha - 2012.pdf: 4678972 bytes, checksum: aa3da530028732bcbc87f49ba9ea6725 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2014-09-22T19:09:30Z (GMT). No. of bitstreams: 2 Carolina C. de Queiroz Brito Cunha - 2012.pdf: 4678972 bytes, checksum: aa3da530028732bcbc87f49ba9ea6725 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2012-10-27Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/8215/Carolina%20C.%20de%20Queiroz%20%20Brito%20Cunha%20-%202012.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Biologia (ICB)UFGBrasilInstituto de Ciências Biológicas - ICB (RG)ADNEY, B.; BAKER, J. Measurement of cellulase activities. Chemical Analysis and Testing Task: Laboratory Analytical Procedure. Golden, CO: National Renewable Energy Laboratory, 11 p. (NREL LAP, 006). ALANI, F., ANDERSON, W.A., YOUNG, M.M. (2008) New isolate of Streptomyces sp. With novel thermoalkalotolerant cellulases. Biotechnol Lett 30: 123-126 ANTANOPOULUS, V.T.; HERNANDEZ, M; ARIAS, M.E.; MAVRAKOS, E. (2001) The use of extracellular enzymes from Streptomyces albus ATCC 3005 for the bleaching of eucalyptus kraft pulp. Applied Microbiology and Biotechnology,57:92-97. ARAI, T. (1997) What are actinomycetes? In: Miyadoh, S.; Hamada, M.; Hotta, K.; Kudo, t.; Seino, A; Vobis, G. e Yokota, A. Atlas de actinomyces. Japan: The society of Actinomycetes, Asakura Publishing CO., ltda, p. 176 – 177. ARANTES, V., & SADDLER, J. (2010). Access to Cellulose Limits the Efficiency of Enzymatic Hydrolysis: The Role of Amorphogenesis. Biotechnology for Biofuels , 3(4):1- 11. AUGUSTINE, S., & BHAVSAR, S. a. (2005). A nonpolyene antifungal antibiotic from Streptomyces PU 23. J. Biosci. 30, 201-211. , 30:201-211. BASTAWDE, K. (1992). Xylan structure, microbial xylanases, and their mode de action. World J. of Microbiol and biotechnol. , 8:353 – 368. BAYER, E. C. (1998a). Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. , 8,:548–557. BAYER, E. S. (1998b ). Cellulosomes—structure and ultrastructure. J. Struct. Biol., 124:221–234. BAYER, E., & LAMED, R. (1992). The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource? Review. Biodegradation , 3 (2 – 3): 171-188. BEG, Q., KAPOOR, M., MAHAJAN, L., & HOONDAL, G. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56:326-338. BIELY, P., VRSANSKA,M., TENKANEM, M. & KLUEPFEL, D. (1997) Endo-beta-1,4- xylanase families: differences in catalytic properties. Journal of Biotechnology, 57: 151- 166. BLUM, D.L., LI, X.L., CHEN, H., LJUNGDHL, L.G. (1999) Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. Strain PC-2. Appl Environ Microbiol 65: 3990-3995. BORASTON, A., BOLAM, D., GILBERT, H., & DAVIES, G. (2004). Carbohydrate- Binding Modules: F ne-Tuning Polysaccharide Recognition. Biochemical Journal, 382(3):769–781. BRADFORD, M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-glye binding. Analytical Biochemistry,72:248-254. BROWN, R. I., GRUBER, P., & KAMM, M. (2005). (Eds). Biomass refineries based on hybrid thermochemical/biological processing – an overview, in biorefineries, biobased industrial processes and products. Weinheim, Germany: Wiley-VCH Verlag . BUANAFINA, M. (2009). Feruloylation in Grasses: Current and Future Perspectives. Molecular Plant , 2(5):861–872. BYRNE, K. L. (1999). Isolation of a cDNA encoding a putative cellulase in the red clawcrayfish Cherax quadricarinatus. Gene , 239:317–324. CARVALHO, W.R. (2008) Caracterização Bioquímica da Endoxilanase Recombinante (HXYN2r) do fungo termofílico Humicola grisea var. thermoidea e sua aplicação na sacarificação de resíduos agrícolas. Tese (Doutorado), Universidade Federal de Goiás, Goiânia-GO. CARVALHO, W.R. (2003) Produção e Purificação de Xilanase de 23 KDa do fungo termofílico Humicola grisea var. thermoidea. Dissertação (Mestrado), Faculdade de Engenharia Química de Lorena-SP. CHAUDHARY, P.; DEOBAGKAR, D.N.(1997) Characterization of cloned endoxylanase from Cellulomonas sp. NCIM 2353 expressed in Escherichia coli. Current Microbiology,34: 273-279. CHELLAPANDI, P. & HIMANSHU, M.J. (2008). Production of endoglucanase by the native strains of streptomyces isolates in submerged fermentation. Brazilian Journal of Microbiology , 39:122-127. . COLLINS, T., GERDAY, C., & FELLER, G. (2005). Xylanases, xylanases familes and extremophilic xylanases. FEMS Microbiology reviews, 29:5-23. CONNERTON, I.; CUMMINGS, N.; HARRIS, G.W.; DEBEIRE, P.; BRETON, C. (1999) Promoter analysis of the acetate-inducible isocitrate lyase gene (acu-3) from Nerospora crassa. Biochimimica et Biophysica Acta,1433:110-121. COUGHLAN, M. P., & LJUNGDAHL, L. G. (1988). Comparative Biochemistry of Fungal and Bacterial Cellulolytic Enzyme Systems. FEMS Symposium (Biochem. Genet. Cellul. Degrad.) , 3:11-30. COWLING, E. (1963). Structural features of cellulose. In: Reese, E.T. Enzymic hydrolysis of cellulose and Related Materials. The Macmillan Company, New York . DAROIT, D. (2007). Caracterização de uma β-glicosidase de Monascus purpureus. Dissertação de mestrado, Faculdade de Agronomia, UFGRS. DEMIRBAS, A. (2008 ). Products from Lignocellulosic Materials via Degradation Processes. Energy Sources , 30:27-37. DENG, P.; LI, D.; CAO, Y.; LU, W.; WANG, C.(2006) Cloning of a gene encoding and acidophilic endo-β-1,4-xylanases obtained from Aspergillus niger CGMCC1067 and constitutive expression in Pichia pastoris. Enzyme and Microbial Technology, 39:1096- 1102. DIETZ, A.; MATHEWS, J. (1971) Classification of Streptomyces spore surfaces into five groups. Applied Microbiology,21(3):527-533. DILLON, A. (2004). Celulase. In: SAIS, S. & PIETROR, C.R.L. Enzimas como agentes biotecnológicos. Riberão Preto: Legis Summa , cap 14, p. 241-268. EBRINGEROVA, A. H. (2005). Hemicellulose. Dv. Polym. Sci. 186, 1-67. Dv. Polym. Sci. , 186:1-67. EL-TARABILY, K. (2006). Rhizosphere-competent isolates of streptomycete and nonstreptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot , 84: 211- 222. EL-TARABILY, K., SOLIMANA, M., NASSARA, A., AL-HASSANIA, H., SIVASITHAMPARAM, K., & MCKENNAD, F. a. (2000). Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol , 49:573-583. ENSING, J.C. (1978) Formation, properties and germination of Actinomycetes spores. Annual Review of Microbiology,32:185-219. FERREIRA, E. (2004). Xilanase. In: SAID, S. & PIETROR, C.R.L. Enzimas como agentes biotecnológicos. Riberão Preto: Legis Summa , cap 8, p. 137-148. GEORGE, S.; AHMAD, A.; RAO, M. (2001) Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresource Technol 77:171–175 GHOSE, T. (1987) Measurement of cellulase activities. Pure & Appl Chem 59:257–268 GLAZER, A., & NIKAIDO, H. (2007 ). Biomass, In: Microbial Biotechnology: Fundamentals of Applied Microbiology, Glazer, A.N., Nikaido. Cambridge Univerty Press, New York , 430-455. GNANSOUNOU, E., & DAURIAT, A. (2010). Techno-economic analysis of lignocellulosic ethanol: A review. Bioresource Technology , 101:4980-4991. GOLDEMBERG, J. (2007). Ethanol for a sustainable energy future. Science , 808:315. GOLDEMBERG, J., & GUARDABASSI, P. (2009). Are biofuels a feasible option? Energy Policy v 37 10-14 2009 , 37:10-14 . GOODFELLOW, M. A.; WILLIAMS, S.T. (1983). Ecology of actinomycetes. Annu Rev Microbiol , 37:189-216. GOMES, R.C.; SEMEDO, L.T.A.S.; SOARES, R.M.A.; ALVIANO, C.S.; LINHARES, L.F.; COELHO, R.R.R. (2000) Chitinnolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Lett. Appl. Microbiol., 30:146-150. GUPTA, R.; SAXENA, R.K.; CHATUVERDI, P.; VIRDI, J.S. (1995) Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. Journal os Applied Biotechnology,78:378-383. HAMELINCK, C. H. (2005). Ethanol from Lignocellulosic Biomass: Techno-Economic Performance in Short-, Midlle- and Long-Term. Biomass Bioenergy , 28:384-410. HAMMEL, K. E., & CULLEN, D. C. (2008). Role of Fungal Peroxidase in Biological Lignolysis. Current Opinion Plant Biology , 11:349-355. HANH-HAGERDAL, B., GALBE, M., GORWA-GRAUSLUND, M., LIDEN, G., & ZACCHI, G. (2006 ). Bio-ethanol the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006 12:549-556 , 12:549-556. HARRIS , G.W.; PICCKERSGRILL, R.W.; CONNERTON, I.; DEBEIRE, P.; TOUZEL, J.; BRETON, C.; PÉREZ, S. (1997) Strutural basis of the properties of an industrially relevant thermophilic xylanase. Proteins: Structure, Function and Genetic, 29:77-86. HAYASHIA, K.; KAWAHARAB, K.; NAKAIC, C.; SANKAWAB, U.; SETOD, H.; HAYASHIB, T. (2000). Evaluation of (1R,2R)-1-(5’-methylfur-3’-yl)propane-1,2,3-triol, a sphydrofuran derivative isolated from a Streptomyces sp., as an anti-herpes virus drug. J. Antimic. Chemoth, 46:181-189. HILDEN, L. D. (2003). Use of a fluorescence labelled, carbohydrate-binding module from Phanerochaete chrysosporium Cel7D for studying wood cell wall ultrastructure. Biotechnol. Lett. 25, 553–558. , 25:553–558. HOLT, J.G.; KRIEG, N.R.; SNEATH, P.H.A.; STANLEY, J.T.; WILLIAMS, S.T. (1994) (eds). In: Bergey’s manual of determinative bacteriology. 9ed. Williams & Wilkins, Co.: Baltimore. HON, D. (1994). Cellulose: a random walk along its historical path. Cellulose , 1:1–25. HOSHINO, E.; WADA, Y.; NISHIZAWA, K. (1999) Improvements in the hygroscopic properties of cotton cellulose by treatment with an endo-type cellulase from Streptomyces sp. KSM-26. J Biosc Bioeng, 88: 519–525. HUANG, Y.; LI, W.; WANG, L.; LANOOT, B.; VANCANNEYT, M.; RODRIGUEZ, C.; LEE, M.D.; ODOM, J.M.; BUCHANAN JR., R.J. (1998) New perspectives on microbial dehalogenation of chlorinated solvents: Insights from the field. Annual Review of Microbiology, 52:423-452. LI, R.; KHALEELI, N. & TOWNSEND, C.A. (2000) Expransion of the clavulanic acid gene cluster: Identfication and in vivo functional analysis of three new genes required for biosybthesis of clavulanic acid by Streptomyces clavuligerus. J. Bacteriol, 182(14)4087-4095. LIU, Z.; SWINGS, J.; GOODFELLOW, M. (2004) Streptomyces glauciniger sp. nov., a novel mesophilic streptomycete isolated from soil in south China. International Journal of Systematic and Evolutionary Microbiology, 54,:2085–2089 LOCCI, R.; SHARPLES, G.P. (1984) Morphology. In: GOODFELLOW, M.; MORDARSKI, M.; WILLIAMS, S.T. Lodon. Academic Press,cap3, p.165-199. LOCCI, R. (1976) Developmental micromorphology of actinomycetes. In: Arai, T. (ed) Actinomycetes: The boundary microorganisms. Baltimore. Univerty Park Press: 249-297. HSU, J., & TAN, C. S. (1993). Separation of ethanol from aqueous solution by a method incorporating supercritical CO2 with reverse osmosis. Journal of Membrane Science 81:273-285 1993 , 81:273-285 1993. HUANG, S., WANG, X., YAN, Y., Wang, J., Zhang, J., LIU, C., et al. (2012). Neaumycin: A New Macrolide from Streptomyces sp. NEAU-x211. Organic Letters , 14:5 1254–1257. HSU, C.L., CHANG, K.S., LAI, M.Z., CHANG, T.S., CHANG, Y.H., JANG, H.D. (2011) Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing strep for bioethanol production. Biomass and Bioenergy 35, 1878-1884. IBRAHIM, S., & EL-DIWANY, A. (2007). Isolation and Identification of New Cellulases Producing Thermophilic Bacteria from an Egyptian Hot Spring and Some Properties of the Crude Enzyme. Aust. J. Basic Appl. Sci. 1(4): 473-478. , 1(4): 473-478. JANG, H.; CHEN, K. (2003) Production and characterization of thermostable cellulases from Streptomyces transformant T3–1. World J Microbiol Biotechnol 19:263–268 JORGENSEN, H., KRISTENSEN, J., & FELBY, C. (2007). Enzymatic Conversion of Lignocellulose into Fermentable Sugars: Challenges and Opportunities. Biofuels Bioproducts and Biorefining-Biofpr. , 1:119–134. KALYANI, S., & SMITHA, B. S. (2008). Pervaporation separation of ethanol-water mixtures though sodium alginate membranes. Desalination , 229:68-81 . KOVACS, K.; MACRELLI, S.; SZAKACS, G.; ZACCHI, Z. (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnology for Biofuels, 2:14. KUHAD, R., SINGH, A., & ERIKSSON, K. (1997). Microorganisms and Enzymes Involved in the Degradation of Plant Fiber Cell Walls. Advances in Biochemical Engineering Biotechnology , 57:45–125,. KULKARNI, N., SHENDYE, A., & R.A.O.M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews , 23:411-456. LAEMMLI, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685 LEE, T.S.; MUFORD, D.;ROMERO, R.; LAMME, V.A.F. (1998) The role of the primary visual cortex in higher level vision. Vision Research 38 :2429–2454 LIMA, A.L.G., NASCIMENTO, R.P., BON, E.P.S., COELHO, R.R.R. (2005) Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzyme and Microbial Technology 37:272-277. LIN, Y., & TANAKA, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. , 69:627-642 . LOCCI, R. (1984) Streptomycetes and related genera. In: Williams S (ed) Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2451– 2508 LYND, L. W. (2002). Microbial Cellulose. Utilization: Fundamentals and Biotechnology. Microbiology and Molecular biology reviews , 66: 506-577. MACEDO, I., & SEABRA, J. d. (2008). Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and prediction for 2020. Biomass and bioenergy. , 32:585-597. MARTIM, P. et al. (2000) Identification and typing Streptomyces strains evaluation of interspecific, intraspecific and intraclonal differences by RAPD fingerprinting. Research Microbiology, Tokio, Japan, 151:853-864. MARTINEZ, A., RUIZ-DUEÑAS, F., MARTINEZ, M., DEL RIO, J., & GUTIÉRREZ, A. (2009). Enzymatic Delignification of Plant Cell Wall: From Nature to Mill. Current Opinion in Biotechnology , 20:348-357 . MELLOULI, L. A.-M., & BEJAR, S. (2003). Isolation, purification and partial characterization of antibacterial activities produced by a newly isolated Streptomyces sp. US24 strain. Res. Microbiol. , 154:345-352 . MELO, G. (2010). Produção de celulases e xilanases pelo fungo termofílico Humicola grisea var. thermoidea em diferentes substratos lignocelulósicos. (Dissertação de Mestrado) Universidade Federal de Goiás. MILAGRES, A. &. (1994). Production of xylanases from Penicillium janthinellum and its use in the recovery of cellulosic textil fibers. Enzyme and Microbial Technology , 16, 627- 632. MILLER, L. (1959) Use of dinitrosalicylic acid reagent for determinationof reducing sugar. Anal Chem, 31:426–428. MINNIKIN, D.E.; O’DONNELL, A.G. (1984) Actinomycetes envelope lipid and peptidoglycan composition. In: GOODFELLOW, M.; MORDARSKI, M.; WILLIAMS, S.T. (ed).The biology of actinomycetes. London Academic Press, cap. 7:337-388. MOONEY, C., MANSFIELD, S., TOUHY, M., & SADDLER, J. (1998). The Effect of Initial Pore Volume and Lignin Content on the Enzymic Hydrolysis of Softwoods. Bioresource Technology , 64(2):113-119. MOSIER, N., WYMAN, C., DALE, B., ELANDER, R., LEE, Y., HOLTZAPPLE, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology , 96:673-686 . MTUI, G. (2009 8:1398-1415). Recent Advances in Pretreatment of Lignocellulosic Wast and Production of Value Added Products. African Journal of Biotechnology , 8:1398-1415. NADIA, H. A., AMAL, M.A. & ABEER, A.K. (2010). Xylanase production by Streptomyces lividans (NRC) and it’s application on waste paper. Australian Journal of basic and Applied Sciences , 4:1358-1368. NASCIMENTO, R. C.-C. (2002). Production and partial characterization of xilanase from Streptomyces sp strain AMT-3 isolated from Brazilian cerrado soil. Enzyme and Microbial Technology , 31:549-555. NASCIMENTO, R. J. (2008). Brewr´s spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis. Letters in Applied Microbiology , 48:529-535. NASCIMENTO, R. M.-C. (2003). A novel strain of Streptomyces malaysiensis isolated from Brazilian soil produces high endo-β-1,4-xylanase titres. World Journal of Microbiology and Biotechnology. , 19:879-881. NASS, L., PEREIRA, P., & ELLIS, D. (2007). Biofuels in Brazil: an overview. Crop Science , 47:2228-2237. NIEDUSZYNSKI, I. P. (1970). Crystallite size in natural cellulose. Nature , 225:273–274. NOGUEIRA, A., & VENTURINI FILHO, W. (2005). Aguardente de cana. Botucatu Faculdade de Ciências Agronômicas, UNESP . OLIVEIRA, G. (2007) Expressão heteróloga do gene de celobiohidrolase (cbh1,2) do fungo Humicola grisea var. thermoidea em Pichia pastoris. Dissertação de Mestrado em Biologia, Universidade Federal de Goiás. OG, L., CHOI, G., CHOI, Y., JANG, K., PARK, D., & KIM, C. a. (2008). Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol , 18:1741-1746. OMETTO, A., & ROMA, W. (2010). Atmospheric impacts of the life cycle emissions of fuel ethanol in Bazil: based on chemical energy. Journal of Cleaner Production , 18:71-76. PANDEY, A. (1995) Glucoamylase research: An overview. Starch, 47(11):439-445. PATEL, R.N. (1998) Tour de placitaxel: Biocatalysis for semisynthesis. Annual Review of Microbiology, 98:361-395. PECZYNSKA-CZOCH, W.; MORDARSKI, M. (1988) Actinomycetes enzymes. In: GOODFELLOW, M.; WILLIAMS, S.T.; MORDARSKI, M. (eds). Actinomycetes in biotechnology. Academic Press,cap 6, p. 219-283. PERSSON, P. H. (2004 ). Silica nanocasts of wood fibers: a study of cell-wall accessibility and structure. Biomacromolecules 5, 1097–1101. , 5:1097–1101. PETERES, S. et al. (2000) Sucession of microbial communities during hot composting as detected by PCR-single-stand-conformation polymorphism-based genetic profiles of small- subunit rRNA genes. Applied and Environmental Microbiology, Washington, 66 (3): 930-936. PIETROBON, V.C.; MONTEIRO, R.T.R.; POMPEU, G.B.; POGGI, E.; Lopes, B.M.L.; AMORIM, H.V.; CRUZ, S.H.; VIÉGAS, E.K.D. (2011) Enzymatic Hydrolysis of Sugarcane Bagasse Pretreated with Acid or Alkali. Brazilian Archives of Biology and Technology, 52 (2):229-233. PLANO NACIONAL DE AGROENERGIA 2006-2011. Ministério da Agricultura e Pecuária. (2005). Empresa Brasileira de Pesquisa Agropecuaria. 120. POHANKA, A. (2006). Antifungal antibiotics from potential biocontrol microorganisms. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden. POLIZELI, M. R. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology , 67: 577-591. POMPEU, G. (2010). Comportamento enzimático de quatro fungos lignocelulolíticos crescidos em bagaço e palha de cana-de-açúcar e expostos a duas concentrações de nitrogênio, visando à produção de etanol. Tese de Doutorado. Centro de Energia Nuclear na Agricultura da USP . PRADE, R. (1995). Xylanases: from biology to biotechnology. Biotechnology and Genetic Engineering Review , 13:100-131. PRASAD, S., & SINGH, A. &. (2007). Ethanol as an Alternative Fuel from Agricultural, Industrial and Urban Residues. Industrial and Urban Residues. Resources, Conservation and Recycling. , 50:1-39. QUIRÓS, L.M.; CARBAJO, R.J.; BRAFIA, A.F.; SALAS, J.A. (2000) Glycosylation of macrólide antibiotics: Purification and kinetic studies of a macrolide glycosyl tranferase from Streptomyces antibioticus. J.Biol. Chem.275:11713-11720. RAGAUSKAS, A., WILLIAMS, C., DAVISON, B., BRITOVSEK, G., CAIRNEY, J., ECKERT, C. (2006). The Path Forward for Biofuels and Biomaterials. Science , 311:484- 489. RIPOLI, T., & RIPOLI, M. (2004). O setor sucroalcooleiro no Brasil. Biomassa de canade- açúcar: colheita, energia e ambiente. USP, ESALQ , 1:302. ROBERTS, M.A.; CRAWFORD, D.L. (2000) Use of randomly amplied polymorphic DNA as a means of developing genus-and strains-specific Streptomyces DNA probes. Applied and Environmental Microbiology Washington, p. 2555-2564. ROSSETO, F. (2011). Caracterização bioquímica, biofísica e estrutural da principal endoglucanase secretada por xanthomonas campestris PV. Campestris ATCC33913. Dissertação (Mestrado) Intituto de Física de São Carlos Universidade de São Paulo . RUEGGER, M. T.-T. (2001). Isolamento de fungos produtores de ácido γ-linolênico de solo da Estação Ecológica de Juréia-Itatins, SP. Revista Ciências Farmacêuticas, São Paulo. , 23 (1): 49-58. RUIZ-DUEÑAS, F., & MARTÍNEZ, A. (2009). Microbial Degradation of Lignin: How a Bulky Recalcitrant Polymer is Efficiently Recycled in Nature and How We Can Take Advantage of this. Microbial Biotechnology , 2(2):164–177. SALAMONI, S. (2005). Produção e caracterização de celulases secretadas po Streptomyces sp. isolado de processos de compostagem. Dissertação Porto Alegre/RS . SANCHEZ, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv , 27 (2): 185-194. SANDGREN, M., & HIBERG, J. S. (2005). Structural and Biochemical Studies of GH Family 12 Cellulases: Improved Thermal Stability and Ligand Complexes. Progress in Biophysics and Molecular Biology , 89(3): 246-291. SEMBIRING, L. (2009) Molecular Phylogenetic Classification of Streptomycetes Isolated from the Rhizosphere of Tropical Legume (Paraserianthes falcataria) (L.) Nielsen. HAYATI Journal of Biosciences, 16 (3):100-108 SCHREMPF, H.; WALTER, S. (1995) The cellulolytic system of Streptomyces retyiculi. Int. J. Macromolecules, 15: 353-355. SEMEDO, L.; GOMES, R.; BON, E.; SOARES, R.; LINHARES, L.; COELHO, R. (2000) Endocellulase and exocellulase activities of two Streptomyces strains isolated from a forest soil. Appl Biochem Biotechnol 84:267–276 SHAIKH, S.A.; DESHPANDE, M.V. (1993) Chitinolytic enzymes: their contribuition to basic an applied research. World. J. Microbiol. and Biotechnol,9:468-475. SHALLOM, D., & SHOHAM, Y. (2003). Microbial Hemicellulases. Current Opinion in Microbiology , 6:219-228. SILVA SOUSA, C., & FERMINO SOARES, A. a. (2008). Characterization of Streptomycetes with potential to promote plant growth and biocontrol. Sci Agric (Piracicaba, Braz) , 65, 50-55. SINGH, S., TYAGI, C., DUTT, D., & UPADHYAYA, J. (2009). Production of High Level of Cellulase-Poor Xylanases by Wild Strains of White-Rot Fungus Coprinellus Disseminatus in Solid-State Fermentation. New Biotechnology , 26(3-4):165-170. SINGHANIA, R. S. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology , 46:541–549. SIQUEIRA, F.G. (2010) Resíduos Agroindustriais com Potencial para a Produção de Holocelulases de Origem Fúngica e Aplicações Biotecnológicas de Hidrolases. Tese de Doutorado. Universidade de Brasília. SOLOMON, B., BARNES, J., & HALVORSEN, K. (2007). Grain and cellulosic ethanol: history, economics and energy policy. Biomass Bioenergy , 31:416-425. SPAIN, J.C. (1995) Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 49:523-555. STEELE, D.B.; and STOWERS, M.K. (1991) Techniques for selection of industrially important microorganisms. Annual Review of Microbiology, 45: 89 -106. SUKUMARAM, R. S. (2009). Cellulase production using biomass feed stock and its application in lignocelluloses saccharification for bio-ethanol production. Renewable Energy , 34:421-424. SUNNA, A., & ANTRANIKIAN, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology , 17:39-67. SUTCLIFFE, R., & SADDLER, J. (1986). The Role of Lignin in the Adsorption of Cellulases During Enzymic Treatment of Lignocellulosic Material. Biotechnology And Bioengineering Symposium , 749-762. TAO, Y.M.; XU, X.Q.; MA, S.J.; LIANG, G.; WU, X.B.; LONG, M.N.; CHEN, Q.X. (2011) Cellulase Hydrolysis of Rice Straw and Inactivation of Endoglucanase in Urea Solution. Journal of agricultural and food chemistry, 59:10971-10975. TAVARES, E. (2010). Clonagem, expressão heteróloga, purificação e caracterização funcional da endoglicanase A de Aspergillus nidulan. Dissertação (Mestrado) Universidade de Brasília. Dissertação (Mestrado) Universidade de Brasília. THOMPSON, N. (1983). Hemicellulose as a biomass resource. In: Wood and Agricultural Residues; research on use for feed, fuels and chemicals. Soltes, J. (ed), J. New York, Academic Press , p. 101-119. TOMME, P. W. (1995). Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. , 37:1-81. ÚNICA, U. D. (2010). www.unica.com.br. Acesso em 10 de fev de 2012 VINHA, F.N.M.D., OLIVEIRA, M.P.G., FRANCO, M.N., MACRAE, A., BON, E.P.S., NASCIMENTO, R.P. and COELHO, R.R.R. (2011) Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate. Appl Biochem Biotechnol 164:256-267. VOBIS, G. (1997) Mophology of actinomycetes. In: MIYADOH, S.; HAMADA, M.; HOTTA, K.; KUDO, T.; SEINO, A.; VOBIS, G.; YOKOTA, A. Atlas of actinomycetes. Japan: The Society of Actinomycetes, Askura Publishing CO., ltda, p. 180-191. WALTER, S., SCHREMPF, H. (1996) Physiological studies of cellulase (avicelase) synthesis in Streptomyces reticuli. Applied and Environmental Microbiology 62, 1065-1069. WANG, M., & WANG, J. &. (2011). Lignocellulosic Bioethanol: Status and Prospects. Energy Sources , 33:612–619. WANNER, L. A. (2007). A new strain of Streptomyces causing common scab in potato. Plant Dis., 91:352-359. WATANABE, H. N. (1998). A cellulase gene of termite origin. Nature , 394:330–331. WAKAECHUK, W.W.; SUNG, W.L.; CAMPBELL, R.L.; CUNNINGHAM, A.; WATSON, D.C.; YAGUCHI, M. (1994) Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng. 7(11):1379-1386. WESTBYE, P., KOHNKE, T., GLASSER, W., & GATENHOLM, P. (2007). The Influence of Lignin on the Selfassembly Behavior of Xylan Rich Fractions from Birch. CelluloseCellulose, Vol.14, pp. 603- , 14:603-613. WILLIAMS, S.T.; LANNING, S; WELLINGTON, M.H. (1984) Ecology of actinomycetes. In: GOODFELLOW, M., MORDARSKI, M. E WILLIAMS, S.T. (ed). The biology of actinomycetes. Lodon. Academic Press: 481-527. WILLIAMSON, R. B. (2002). Towards the mechanism of cellulose synthesis. Trends Plant Sci. , 7:461-467. WOODWARD, J. (1984). Xylanases: functions, properties and applications. Enzyme and Fermentation Biotechnology , 8:9-30. YOON, K.Y.; WOODAMS, E.E.; HANG, Y.D. (2006) Enzymatic production of pentoses from the hemiceluloses fraction of corn residues. LWT, 39:387-391. YOKOTA, A.(1997) Phylogenetic relationship of actinomycetes. In: MIYADOH, S.; HAMADA, M.; HOTTA, K.; KUDO, T.; SEINO, A.; VOBIS, G.; YOKOTA, A. Atlas of actinomycetes. Japan: The Society of Actinomycetes, Asakura Publishing CO., ltda, p. 194- 197. ZANG, J.; SIIKA-AHO, M.; PURANEN, T,; TANG, M.; TENKANEN, M., VIIKARIA, L. (2011) Thermoestable recombinant xylanases from Nonomuraea fleruosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylan and pretreated wheat straw. Biotechnology for Biofuels, 4:12-25. XU, B. H. (2000). Purification, characterization and amino-acid sequence analysis of a thermostable, lowmolecular mass endo-b-1,4-glucanase from blue mussel, Mytilus edulis. Eur. J. Biochem. , 267:4970–4977.6883982777473437920600600600600-3872772117827373404-203884118251241698-2555911436985713659http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessStreptomyces - bagaço de canaStreptomyces - celulasecellulases and xylanasesMICROBIOLOGIA::MICROBIOLOGIA APLICADACaracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicosProduction and characterization of cellulases and xylanases by thermophilic Streptomyces sp. grown on lignocellulosic wastesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/efc1c0a4-9d5f-4a0f-a820-8195c18d0c45/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/6f757ae1-76eb-4ec0-a754-56665bfd2049/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-822302http://repositorio.bc.ufg.br/tede/bitstreams/33791039-0bee-44f5-a673-5d5c3f5ff960/download1e0094e9d8adcf16b18effef4ce7ed83MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/d6fd6368-3911-4f9b-b724-92d14ccc88da/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALCarolina C. de Queiroz Brito Cunha - 2012.pdfCarolina C. de Queiroz Brito Cunha - 2012.pdfdissertaçãoapplication/pdf4678972http://repositorio.bc.ufg.br/tede/bitstreams/89d44b28-c519-41c3-b441-5a098b800e62/downloadaa3da530028732bcbc87f49ba9ea6725MD55TEXTCarolina C. de Queiroz Brito Cunha - 2012.pdf.txtCarolina C. de Queiroz Brito Cunha - 2012.pdf.txtExtracted Texttext/plain143536http://repositorio.bc.ufg.br/tede/bitstreams/319cd180-d30e-4ffa-b5dd-61cd21d4714f/downloadc50643f1c6746c691cc408f1ee7faaa3MD56THUMBNAILCarolina C. de Queiroz Brito Cunha - 2012.pdf.jpgCarolina C. de Queiroz Brito Cunha - 2012.pdf.jpgGenerated Thumbnailimage/jpeg2277http://repositorio.bc.ufg.br/tede/bitstreams/31cc8fb2-1744-4056-9824-1c6dd4302bfa/download6f37f6d369235b77b80498d50dfb8b4dMD57tede/31192014-09-23 03:01:56.79http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/3119http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2014-09-23T06:01:56Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos |
dc.title.alternative.eng.fl_str_mv |
Production and characterization of cellulases and xylanases by thermophilic Streptomyces sp. grown on lignocellulosic wastes |
title |
Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos |
spellingShingle |
Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos Cunha, Carolina Cândida de Queiroz Brito Streptomyces - bagaço de cana Streptomyces - celulase cellulases and xylanases MICROBIOLOGIA::MICROBIOLOGIA APLICADA |
title_short |
Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos |
title_full |
Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos |
title_fullStr |
Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos |
title_full_unstemmed |
Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos |
title_sort |
Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos |
author |
Cunha, Carolina Cândida de Queiroz Brito |
author_facet |
Cunha, Carolina Cândida de Queiroz Brito |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Bataus, Luiz Artur Mendes |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/3739169267521003 |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3556341716515132 |
dc.contributor.author.fl_str_mv |
Cunha, Carolina Cândida de Queiroz Brito |
contributor_str_mv |
Bataus, Luiz Artur Mendes |
dc.subject.por.fl_str_mv |
Streptomyces - bagaço de cana Streptomyces - celulase |
topic |
Streptomyces - bagaço de cana Streptomyces - celulase cellulases and xylanases MICROBIOLOGIA::MICROBIOLOGIA APLICADA |
dc.subject.eng.fl_str_mv |
cellulases and xylanases |
dc.subject.cnpq.fl_str_mv |
MICROBIOLOGIA::MICROBIOLOGIA APLICADA |
description |
An actinomycete strain, isolated from cane sugar bagasse (CSB), identified as Streptomyces sp was selected for its ability to produce cellulases. The production of cellulases was analyzed by submerged fermentation by cultivation on minimal medium (MM) containing CSB, wheat bran (WB) or carboxymethylcellulose (CMC) as carbon source, and yeast extract (YE) as nitrogen source. The results show that WB was the best inducer of CMCases (2.0 U.mL-1). Aiming to analyze the production of cellulases and xylanases kinetics, the isolate was inoculated in minimal medium containing 0.5% (w/v) WB and maintained for 12 days at 45°C under constant agitation of 180 rpm. The highest yield of Avicelase was observed after 264 h of cultivation (5.646 Uml-1), after 144 h for CMCase (3.872 Uml-1), after 144 h for FPase (0.0947 Uml-1) and after 288 h for Xylanase (92.40 Uml- 1). Culture supernatants with maximum activity of Avicelase, CMCase, Fpase and Xylanase were analyzed for optima pH and temperature of the respective enzymes. The highest enzyme activities were detected at pH 7.0 at 35°C for Avicelase, pH 4.5/75°C for CMCase, pH 5.5/45°Cfor FPase and pH 5.5/70°C for Xylanase. The enzymes retained more than 70% of the initial activity after 2 h incubation at 50°C. The profile proteins analyzed by zymogram demonstrated a set of secreted cellulases (37, 21 and 17 kDa) and xylanases (39, 21, 18 and 17 kDa) when grown on FT for 144 h. The saccharification assay with CSB as substrate showed that the enzyme complex was able to release 19% of glucose and 62.9% of xylose. |
publishDate |
2012 |
dc.date.issued.fl_str_mv |
2012-10-27 |
dc.date.accessioned.fl_str_mv |
2014-09-22T19:09:30Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CUNHA, Carolina Cândida de Queiroz Brito. Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos. 2012. 99 f. Dissertação (Mestrado em Biologia) - Universidade Federal de Goiás, Goiânia, 2012. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/3119 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000796w |
identifier_str_mv |
CUNHA, Carolina Cândida de Queiroz Brito. Caracterização de celulases e xilanases produzidas por Streptomyces sp. cultivado em resíduos lignocelulósicos. 2012. 99 f. Dissertação (Mestrado em Biologia) - Universidade Federal de Goiás, Goiânia, 2012. ark:/38995/001300000796w |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/3119 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6883982777473437920 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-3872772117827373404 |
dc.relation.cnpq.fl_str_mv |
-203884118251241698 |
dc.relation.sponsorship.fl_str_mv |
-2555911436985713659 |
dc.relation.references.por.fl_str_mv |
ADNEY, B.; BAKER, J. Measurement of cellulase activities. Chemical Analysis and Testing Task: Laboratory Analytical Procedure. Golden, CO: National Renewable Energy Laboratory, 11 p. (NREL LAP, 006). ALANI, F., ANDERSON, W.A., YOUNG, M.M. (2008) New isolate of Streptomyces sp. With novel thermoalkalotolerant cellulases. Biotechnol Lett 30: 123-126 ANTANOPOULUS, V.T.; HERNANDEZ, M; ARIAS, M.E.; MAVRAKOS, E. (2001) The use of extracellular enzymes from Streptomyces albus ATCC 3005 for the bleaching of eucalyptus kraft pulp. Applied Microbiology and Biotechnology,57:92-97. ARAI, T. (1997) What are actinomycetes? In: Miyadoh, S.; Hamada, M.; Hotta, K.; Kudo, t.; Seino, A; Vobis, G. e Yokota, A. Atlas de actinomyces. Japan: The society of Actinomycetes, Asakura Publishing CO., ltda, p. 176 – 177. ARANTES, V., & SADDLER, J. (2010). Access to Cellulose Limits the Efficiency of Enzymatic Hydrolysis: The Role of Amorphogenesis. Biotechnology for Biofuels , 3(4):1- 11. AUGUSTINE, S., & BHAVSAR, S. a. (2005). A nonpolyene antifungal antibiotic from Streptomyces PU 23. J. Biosci. 30, 201-211. , 30:201-211. BASTAWDE, K. (1992). Xylan structure, microbial xylanases, and their mode de action. World J. of Microbiol and biotechnol. , 8:353 – 368. BAYER, E. C. (1998a). Cellulose, cellulases and cellulosomes. Curr. Opin. Struct. Biol. , 8,:548–557. BAYER, E. S. (1998b ). Cellulosomes—structure and ultrastructure. J. Struct. Biol., 124:221–234. BAYER, E., & LAMED, R. (1992). The cellulose paradox: pollutant par excellence and/or a reclaimable natural resource? Review. Biodegradation , 3 (2 – 3): 171-188. BEG, Q., KAPOOR, M., MAHAJAN, L., & HOONDAL, G. (2001). Microbial xylanases and their industrial applications: a review. Applied Microbiology and Biotechnology, 56:326-338. BIELY, P., VRSANSKA,M., TENKANEM, M. & KLUEPFEL, D. (1997) Endo-beta-1,4- xylanase families: differences in catalytic properties. Journal of Biotechnology, 57: 151- 166. BLUM, D.L., LI, X.L., CHEN, H., LJUNGDHL, L.G. (1999) Characterization of an acetyl xylan esterase from the anaerobic fungus Orpinomyces sp. Strain PC-2. Appl Environ Microbiol 65: 3990-3995. BORASTON, A., BOLAM, D., GILBERT, H., & DAVIES, G. (2004). Carbohydrate- Binding Modules: F ne-Tuning Polysaccharide Recognition. Biochemical Journal, 382(3):769–781. BRADFORD, M. (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-glye binding. Analytical Biochemistry,72:248-254. BROWN, R. I., GRUBER, P., & KAMM, M. (2005). (Eds). Biomass refineries based on hybrid thermochemical/biological processing – an overview, in biorefineries, biobased industrial processes and products. Weinheim, Germany: Wiley-VCH Verlag . BUANAFINA, M. (2009). Feruloylation in Grasses: Current and Future Perspectives. Molecular Plant , 2(5):861–872. BYRNE, K. L. (1999). Isolation of a cDNA encoding a putative cellulase in the red clawcrayfish Cherax quadricarinatus. Gene , 239:317–324. CARVALHO, W.R. (2008) Caracterização Bioquímica da Endoxilanase Recombinante (HXYN2r) do fungo termofílico Humicola grisea var. thermoidea e sua aplicação na sacarificação de resíduos agrícolas. Tese (Doutorado), Universidade Federal de Goiás, Goiânia-GO. CARVALHO, W.R. (2003) Produção e Purificação de Xilanase de 23 KDa do fungo termofílico Humicola grisea var. thermoidea. Dissertação (Mestrado), Faculdade de Engenharia Química de Lorena-SP. CHAUDHARY, P.; DEOBAGKAR, D.N.(1997) Characterization of cloned endoxylanase from Cellulomonas sp. NCIM 2353 expressed in Escherichia coli. Current Microbiology,34: 273-279. CHELLAPANDI, P. & HIMANSHU, M.J. (2008). Production of endoglucanase by the native strains of streptomyces isolates in submerged fermentation. Brazilian Journal of Microbiology , 39:122-127. . COLLINS, T., GERDAY, C., & FELLER, G. (2005). Xylanases, xylanases familes and extremophilic xylanases. FEMS Microbiology reviews, 29:5-23. CONNERTON, I.; CUMMINGS, N.; HARRIS, G.W.; DEBEIRE, P.; BRETON, C. (1999) Promoter analysis of the acetate-inducible isocitrate lyase gene (acu-3) from Nerospora crassa. Biochimimica et Biophysica Acta,1433:110-121. COUGHLAN, M. P., & LJUNGDAHL, L. G. (1988). Comparative Biochemistry of Fungal and Bacterial Cellulolytic Enzyme Systems. FEMS Symposium (Biochem. Genet. Cellul. Degrad.) , 3:11-30. COWLING, E. (1963). Structural features of cellulose. In: Reese, E.T. Enzymic hydrolysis of cellulose and Related Materials. The Macmillan Company, New York . DAROIT, D. (2007). Caracterização de uma β-glicosidase de Monascus purpureus. Dissertação de mestrado, Faculdade de Agronomia, UFGRS. DEMIRBAS, A. (2008 ). Products from Lignocellulosic Materials via Degradation Processes. Energy Sources , 30:27-37. DENG, P.; LI, D.; CAO, Y.; LU, W.; WANG, C.(2006) Cloning of a gene encoding and acidophilic endo-β-1,4-xylanases obtained from Aspergillus niger CGMCC1067 and constitutive expression in Pichia pastoris. Enzyme and Microbial Technology, 39:1096- 1102. DIETZ, A.; MATHEWS, J. (1971) Classification of Streptomyces spore surfaces into five groups. Applied Microbiology,21(3):527-533. DILLON, A. (2004). Celulase. In: SAIS, S. & PIETROR, C.R.L. Enzimas como agentes biotecnológicos. Riberão Preto: Legis Summa , cap 14, p. 241-268. EBRINGEROVA, A. H. (2005). Hemicellulose. Dv. Polym. Sci. 186, 1-67. Dv. Polym. Sci. , 186:1-67. EL-TARABILY, K. (2006). Rhizosphere-competent isolates of streptomycete and nonstreptomycete actinomycetes capable of producing cell-wall-degrading enzymes to control Pythium aphanidermatum damping-off disease of cucumber. Can J Bot , 84: 211- 222. EL-TARABILY, K., SOLIMANA, M., NASSARA, A., AL-HASSANIA, H., SIVASITHAMPARAM, K., & MCKENNAD, F. a. (2000). Biological control of Sclerotinia minor using a chitinolytic bacterium and actinomycetes. Plant Pathol , 49:573-583. ENSING, J.C. (1978) Formation, properties and germination of Actinomycetes spores. Annual Review of Microbiology,32:185-219. FERREIRA, E. (2004). Xilanase. In: SAID, S. & PIETROR, C.R.L. Enzimas como agentes biotecnológicos. Riberão Preto: Legis Summa , cap 8, p. 137-148. GEORGE, S.; AHMAD, A.; RAO, M. (2001) Studies on carboxymethyl cellulase produced by an alkalothermophilic actinomycete. Bioresource Technol 77:171–175 GHOSE, T. (1987) Measurement of cellulase activities. Pure & Appl Chem 59:257–268 GLAZER, A., & NIKAIDO, H. (2007 ). Biomass, In: Microbial Biotechnology: Fundamentals of Applied Microbiology, Glazer, A.N., Nikaido. Cambridge Univerty Press, New York , 430-455. GNANSOUNOU, E., & DAURIAT, A. (2010). Techno-economic analysis of lignocellulosic ethanol: A review. Bioresource Technology , 101:4980-4991. GOLDEMBERG, J. (2007). Ethanol for a sustainable energy future. Science , 808:315. GOLDEMBERG, J., & GUARDABASSI, P. (2009). Are biofuels a feasible option? Energy Policy v 37 10-14 2009 , 37:10-14 . GOODFELLOW, M. A.; WILLIAMS, S.T. (1983). Ecology of actinomycetes. Annu Rev Microbiol , 37:189-216. GOMES, R.C.; SEMEDO, L.T.A.S.; SOARES, R.M.A.; ALVIANO, C.S.; LINHARES, L.F.; COELHO, R.R.R. (2000) Chitinnolytic activity of actinomycetes from a cerrado soil and their potential in biocontrol. Lett. Appl. Microbiol., 30:146-150. GUPTA, R.; SAXENA, R.K.; CHATUVERDI, P.; VIRDI, J.S. (1995) Chitinase production by Streptomyces viridificans: its potential in fungal cell wall lysis. Journal os Applied Biotechnology,78:378-383. HAMELINCK, C. H. (2005). Ethanol from Lignocellulosic Biomass: Techno-Economic Performance in Short-, Midlle- and Long-Term. Biomass Bioenergy , 28:384-410. HAMMEL, K. E., & CULLEN, D. C. (2008). Role of Fungal Peroxidase in Biological Lignolysis. Current Opinion Plant Biology , 11:349-355. HANH-HAGERDAL, B., GALBE, M., GORWA-GRAUSLUND, M., LIDEN, G., & ZACCHI, G. (2006 ). Bio-ethanol the fuel of tomorrow from the residues of today. Trends Biotechnol. 2006 12:549-556 , 12:549-556. HARRIS , G.W.; PICCKERSGRILL, R.W.; CONNERTON, I.; DEBEIRE, P.; TOUZEL, J.; BRETON, C.; PÉREZ, S. (1997) Strutural basis of the properties of an industrially relevant thermophilic xylanase. Proteins: Structure, Function and Genetic, 29:77-86. HAYASHIA, K.; KAWAHARAB, K.; NAKAIC, C.; SANKAWAB, U.; SETOD, H.; HAYASHIB, T. (2000). Evaluation of (1R,2R)-1-(5’-methylfur-3’-yl)propane-1,2,3-triol, a sphydrofuran derivative isolated from a Streptomyces sp., as an anti-herpes virus drug. J. Antimic. Chemoth, 46:181-189. HILDEN, L. D. (2003). Use of a fluorescence labelled, carbohydrate-binding module from Phanerochaete chrysosporium Cel7D for studying wood cell wall ultrastructure. Biotechnol. Lett. 25, 553–558. , 25:553–558. HOLT, J.G.; KRIEG, N.R.; SNEATH, P.H.A.; STANLEY, J.T.; WILLIAMS, S.T. (1994) (eds). In: Bergey’s manual of determinative bacteriology. 9ed. Williams & Wilkins, Co.: Baltimore. HON, D. (1994). Cellulose: a random walk along its historical path. Cellulose , 1:1–25. HOSHINO, E.; WADA, Y.; NISHIZAWA, K. (1999) Improvements in the hygroscopic properties of cotton cellulose by treatment with an endo-type cellulase from Streptomyces sp. KSM-26. J Biosc Bioeng, 88: 519–525. HUANG, Y.; LI, W.; WANG, L.; LANOOT, B.; VANCANNEYT, M.; RODRIGUEZ, C.; LEE, M.D.; ODOM, J.M.; BUCHANAN JR., R.J. (1998) New perspectives on microbial dehalogenation of chlorinated solvents: Insights from the field. Annual Review of Microbiology, 52:423-452. LI, R.; KHALEELI, N. & TOWNSEND, C.A. (2000) Expransion of the clavulanic acid gene cluster: Identfication and in vivo functional analysis of three new genes required for biosybthesis of clavulanic acid by Streptomyces clavuligerus. J. Bacteriol, 182(14)4087-4095. LIU, Z.; SWINGS, J.; GOODFELLOW, M. (2004) Streptomyces glauciniger sp. nov., a novel mesophilic streptomycete isolated from soil in south China. International Journal of Systematic and Evolutionary Microbiology, 54,:2085–2089 LOCCI, R.; SHARPLES, G.P. (1984) Morphology. In: GOODFELLOW, M.; MORDARSKI, M.; WILLIAMS, S.T. Lodon. Academic Press,cap3, p.165-199. LOCCI, R. (1976) Developmental micromorphology of actinomycetes. In: Arai, T. (ed) Actinomycetes: The boundary microorganisms. Baltimore. Univerty Park Press: 249-297. HSU, J., & TAN, C. S. (1993). Separation of ethanol from aqueous solution by a method incorporating supercritical CO2 with reverse osmosis. Journal of Membrane Science 81:273-285 1993 , 81:273-285 1993. HUANG, S., WANG, X., YAN, Y., Wang, J., Zhang, J., LIU, C., et al. (2012). Neaumycin: A New Macrolide from Streptomyces sp. NEAU-x211. Organic Letters , 14:5 1254–1257. HSU, C.L., CHANG, K.S., LAI, M.Z., CHANG, T.S., CHANG, Y.H., JANG, H.D. (2011) Pretreatment and hydrolysis of cellulosic agricultural wastes with a cellulase-producing strep for bioethanol production. Biomass and Bioenergy 35, 1878-1884. IBRAHIM, S., & EL-DIWANY, A. (2007). Isolation and Identification of New Cellulases Producing Thermophilic Bacteria from an Egyptian Hot Spring and Some Properties of the Crude Enzyme. Aust. J. Basic Appl. Sci. 1(4): 473-478. , 1(4): 473-478. JANG, H.; CHEN, K. (2003) Production and characterization of thermostable cellulases from Streptomyces transformant T3–1. World J Microbiol Biotechnol 19:263–268 JORGENSEN, H., KRISTENSEN, J., & FELBY, C. (2007). Enzymatic Conversion of Lignocellulose into Fermentable Sugars: Challenges and Opportunities. Biofuels Bioproducts and Biorefining-Biofpr. , 1:119–134. KALYANI, S., & SMITHA, B. S. (2008). Pervaporation separation of ethanol-water mixtures though sodium alginate membranes. Desalination , 229:68-81 . KOVACS, K.; MACRELLI, S.; SZAKACS, G.; ZACCHI, Z. (2009) Enzymatic hydrolysis of steam-pretreated lignocellulosic materials with Trichoderma atroviride enzymes produced in-house. Biotechnology for Biofuels, 2:14. KUHAD, R., SINGH, A., & ERIKSSON, K. (1997). Microorganisms and Enzymes Involved in the Degradation of Plant Fiber Cell Walls. Advances in Biochemical Engineering Biotechnology , 57:45–125,. KULKARNI, N., SHENDYE, A., & R.A.O.M. (1999). Molecular and biotechnological aspects of xylanases. FEMS Microbiology Reviews , 23:411-456. LAEMMLI, U.K. (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680-685 LEE, T.S.; MUFORD, D.;ROMERO, R.; LAMME, V.A.F. (1998) The role of the primary visual cortex in higher level vision. Vision Research 38 :2429–2454 LIMA, A.L.G., NASCIMENTO, R.P., BON, E.P.S., COELHO, R.R.R. (2005) Streptomyces drozdowiczii cellulase production using agro-industrial by-products and its potential use in the detergent and textile industries. Enzyme and Microbial Technology 37:272-277. LIN, Y., & TANAKA, S. (2006). Ethanol fermentation from biomass resources: current state and prospects. Appl Microbiol Biotechnol. , 69:627-642 . LOCCI, R. (1984) Streptomycetes and related genera. In: Williams S (ed) Bergey’s manual of systematic bacteriology, vol 4. Williams & Wilkins, Baltimore, pp 2451– 2508 LYND, L. W. (2002). Microbial Cellulose. Utilization: Fundamentals and Biotechnology. Microbiology and Molecular biology reviews , 66: 506-577. MACEDO, I., & SEABRA, J. d. (2008). Green house gases emissions in the production and use of ethanol from sugarcane in Brazil: The 2005/2006 averages and prediction for 2020. Biomass and bioenergy. , 32:585-597. MARTIM, P. et al. (2000) Identification and typing Streptomyces strains evaluation of interspecific, intraspecific and intraclonal differences by RAPD fingerprinting. Research Microbiology, Tokio, Japan, 151:853-864. MARTINEZ, A., RUIZ-DUEÑAS, F., MARTINEZ, M., DEL RIO, J., & GUTIÉRREZ, A. (2009). Enzymatic Delignification of Plant Cell Wall: From Nature to Mill. Current Opinion in Biotechnology , 20:348-357 . MELLOULI, L. A.-M., & BEJAR, S. (2003). Isolation, purification and partial characterization of antibacterial activities produced by a newly isolated Streptomyces sp. US24 strain. Res. Microbiol. , 154:345-352 . MELO, G. (2010). Produção de celulases e xilanases pelo fungo termofílico Humicola grisea var. thermoidea em diferentes substratos lignocelulósicos. (Dissertação de Mestrado) Universidade Federal de Goiás. MILAGRES, A. &. (1994). Production of xylanases from Penicillium janthinellum and its use in the recovery of cellulosic textil fibers. Enzyme and Microbial Technology , 16, 627- 632. MILLER, L. (1959) Use of dinitrosalicylic acid reagent for determinationof reducing sugar. Anal Chem, 31:426–428. MINNIKIN, D.E.; O’DONNELL, A.G. (1984) Actinomycetes envelope lipid and peptidoglycan composition. In: GOODFELLOW, M.; MORDARSKI, M.; WILLIAMS, S.T. (ed).The biology of actinomycetes. London Academic Press, cap. 7:337-388. MOONEY, C., MANSFIELD, S., TOUHY, M., & SADDLER, J. (1998). The Effect of Initial Pore Volume and Lignin Content on the Enzymic Hydrolysis of Softwoods. Bioresource Technology , 64(2):113-119. MOSIER, N., WYMAN, C., DALE, B., ELANDER, R., LEE, Y., HOLTZAPPLE, M., et al. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology , 96:673-686 . MTUI, G. (2009 8:1398-1415). Recent Advances in Pretreatment of Lignocellulosic Wast and Production of Value Added Products. African Journal of Biotechnology , 8:1398-1415. NADIA, H. A., AMAL, M.A. & ABEER, A.K. (2010). Xylanase production by Streptomyces lividans (NRC) and it’s application on waste paper. Australian Journal of basic and Applied Sciences , 4:1358-1368. NASCIMENTO, R. C.-C. (2002). Production and partial characterization of xilanase from Streptomyces sp strain AMT-3 isolated from Brazilian cerrado soil. Enzyme and Microbial Technology , 31:549-555. NASCIMENTO, R. J. (2008). Brewr´s spent grain and corn steep liquor as substrates for cellulolytic enzymes production by Streptomyces malaysiensis. Letters in Applied Microbiology , 48:529-535. NASCIMENTO, R. M.-C. (2003). A novel strain of Streptomyces malaysiensis isolated from Brazilian soil produces high endo-β-1,4-xylanase titres. World Journal of Microbiology and Biotechnology. , 19:879-881. NASS, L., PEREIRA, P., & ELLIS, D. (2007). Biofuels in Brazil: an overview. Crop Science , 47:2228-2237. NIEDUSZYNSKI, I. P. (1970). Crystallite size in natural cellulose. Nature , 225:273–274. NOGUEIRA, A., & VENTURINI FILHO, W. (2005). Aguardente de cana. Botucatu Faculdade de Ciências Agronômicas, UNESP . OLIVEIRA, G. (2007) Expressão heteróloga do gene de celobiohidrolase (cbh1,2) do fungo Humicola grisea var. thermoidea em Pichia pastoris. Dissertação de Mestrado em Biologia, Universidade Federal de Goiás. OG, L., CHOI, G., CHOI, Y., JANG, K., PARK, D., & KIM, C. a. (2008). Isolation and characterization of endophytic actinomycetes from Chinese cabbage roots as antagonists to Plasmodiophora brassicae. J Microbiol Biotechnol , 18:1741-1746. OMETTO, A., & ROMA, W. (2010). Atmospheric impacts of the life cycle emissions of fuel ethanol in Bazil: based on chemical energy. Journal of Cleaner Production , 18:71-76. PANDEY, A. (1995) Glucoamylase research: An overview. Starch, 47(11):439-445. PATEL, R.N. (1998) Tour de placitaxel: Biocatalysis for semisynthesis. Annual Review of Microbiology, 98:361-395. PECZYNSKA-CZOCH, W.; MORDARSKI, M. (1988) Actinomycetes enzymes. In: GOODFELLOW, M.; WILLIAMS, S.T.; MORDARSKI, M. (eds). Actinomycetes in biotechnology. Academic Press,cap 6, p. 219-283. PERSSON, P. H. (2004 ). Silica nanocasts of wood fibers: a study of cell-wall accessibility and structure. Biomacromolecules 5, 1097–1101. , 5:1097–1101. PETERES, S. et al. (2000) Sucession of microbial communities during hot composting as detected by PCR-single-stand-conformation polymorphism-based genetic profiles of small- subunit rRNA genes. Applied and Environmental Microbiology, Washington, 66 (3): 930-936. PIETROBON, V.C.; MONTEIRO, R.T.R.; POMPEU, G.B.; POGGI, E.; Lopes, B.M.L.; AMORIM, H.V.; CRUZ, S.H.; VIÉGAS, E.K.D. (2011) Enzymatic Hydrolysis of Sugarcane Bagasse Pretreated with Acid or Alkali. Brazilian Archives of Biology and Technology, 52 (2):229-233. PLANO NACIONAL DE AGROENERGIA 2006-2011. Ministério da Agricultura e Pecuária. (2005). Empresa Brasileira de Pesquisa Agropecuaria. 120. POHANKA, A. (2006). Antifungal antibiotics from potential biocontrol microorganisms. Ph.D. Thesis, Swedish University of Agricultural Sciences, Uppsala, Sweden. POLIZELI, M. R. (2005). Xylanases from fungi: properties and industrial applications. Applied Microbiology and Biotechnology , 67: 577-591. POMPEU, G. (2010). Comportamento enzimático de quatro fungos lignocelulolíticos crescidos em bagaço e palha de cana-de-açúcar e expostos a duas concentrações de nitrogênio, visando à produção de etanol. Tese de Doutorado. Centro de Energia Nuclear na Agricultura da USP . PRADE, R. (1995). Xylanases: from biology to biotechnology. Biotechnology and Genetic Engineering Review , 13:100-131. PRASAD, S., & SINGH, A. &. (2007). Ethanol as an Alternative Fuel from Agricultural, Industrial and Urban Residues. Industrial and Urban Residues. Resources, Conservation and Recycling. , 50:1-39. QUIRÓS, L.M.; CARBAJO, R.J.; BRAFIA, A.F.; SALAS, J.A. (2000) Glycosylation of macrólide antibiotics: Purification and kinetic studies of a macrolide glycosyl tranferase from Streptomyces antibioticus. J.Biol. Chem.275:11713-11720. RAGAUSKAS, A., WILLIAMS, C., DAVISON, B., BRITOVSEK, G., CAIRNEY, J., ECKERT, C. (2006). The Path Forward for Biofuels and Biomaterials. Science , 311:484- 489. RIPOLI, T., & RIPOLI, M. (2004). O setor sucroalcooleiro no Brasil. Biomassa de canade- açúcar: colheita, energia e ambiente. USP, ESALQ , 1:302. ROBERTS, M.A.; CRAWFORD, D.L. (2000) Use of randomly amplied polymorphic DNA as a means of developing genus-and strains-specific Streptomyces DNA probes. Applied and Environmental Microbiology Washington, p. 2555-2564. ROSSETO, F. (2011). Caracterização bioquímica, biofísica e estrutural da principal endoglucanase secretada por xanthomonas campestris PV. Campestris ATCC33913. Dissertação (Mestrado) Intituto de Física de São Carlos Universidade de São Paulo . RUEGGER, M. T.-T. (2001). Isolamento de fungos produtores de ácido γ-linolênico de solo da Estação Ecológica de Juréia-Itatins, SP. Revista Ciências Farmacêuticas, São Paulo. , 23 (1): 49-58. RUIZ-DUEÑAS, F., & MARTÍNEZ, A. (2009). Microbial Degradation of Lignin: How a Bulky Recalcitrant Polymer is Efficiently Recycled in Nature and How We Can Take Advantage of this. Microbial Biotechnology , 2(2):164–177. SALAMONI, S. (2005). Produção e caracterização de celulases secretadas po Streptomyces sp. isolado de processos de compostagem. Dissertação Porto Alegre/RS . SANCHEZ, C. (2009). Lignocellulosic residues: biodegradation and bioconversion by fungi. Biotechnol Adv , 27 (2): 185-194. SANDGREN, M., & HIBERG, J. S. (2005). Structural and Biochemical Studies of GH Family 12 Cellulases: Improved Thermal Stability and Ligand Complexes. Progress in Biophysics and Molecular Biology , 89(3): 246-291. SEMBIRING, L. (2009) Molecular Phylogenetic Classification of Streptomycetes Isolated from the Rhizosphere of Tropical Legume (Paraserianthes falcataria) (L.) Nielsen. HAYATI Journal of Biosciences, 16 (3):100-108 SCHREMPF, H.; WALTER, S. (1995) The cellulolytic system of Streptomyces retyiculi. Int. J. Macromolecules, 15: 353-355. SEMEDO, L.; GOMES, R.; BON, E.; SOARES, R.; LINHARES, L.; COELHO, R. (2000) Endocellulase and exocellulase activities of two Streptomyces strains isolated from a forest soil. Appl Biochem Biotechnol 84:267–276 SHAIKH, S.A.; DESHPANDE, M.V. (1993) Chitinolytic enzymes: their contribuition to basic an applied research. World. J. Microbiol. and Biotechnol,9:468-475. SHALLOM, D., & SHOHAM, Y. (2003). Microbial Hemicellulases. Current Opinion in Microbiology , 6:219-228. SILVA SOUSA, C., & FERMINO SOARES, A. a. (2008). Characterization of Streptomycetes with potential to promote plant growth and biocontrol. Sci Agric (Piracicaba, Braz) , 65, 50-55. SINGH, S., TYAGI, C., DUTT, D., & UPADHYAYA, J. (2009). Production of High Level of Cellulase-Poor Xylanases by Wild Strains of White-Rot Fungus Coprinellus Disseminatus in Solid-State Fermentation. New Biotechnology , 26(3-4):165-170. SINGHANIA, R. S. (2010). Advancement and comparative profiles in the production technologies using solid-state and submerged fermentation for microbial cellulases. Enzyme and Microbial Technology , 46:541–549. SIQUEIRA, F.G. (2010) Resíduos Agroindustriais com Potencial para a Produção de Holocelulases de Origem Fúngica e Aplicações Biotecnológicas de Hidrolases. Tese de Doutorado. Universidade de Brasília. SOLOMON, B., BARNES, J., & HALVORSEN, K. (2007). Grain and cellulosic ethanol: history, economics and energy policy. Biomass Bioenergy , 31:416-425. SPAIN, J.C. (1995) Biodegradation of nitroaromatic compounds. Annual Review of Microbiology, 49:523-555. STEELE, D.B.; and STOWERS, M.K. (1991) Techniques for selection of industrially important microorganisms. Annual Review of Microbiology, 45: 89 -106. SUKUMARAM, R. S. (2009). Cellulase production using biomass feed stock and its application in lignocelluloses saccharification for bio-ethanol production. Renewable Energy , 34:421-424. SUNNA, A., & ANTRANIKIAN, G. (1997). Xylanolytic enzymes from fungi and bacteria. Critical Reviews in Biotechnology , 17:39-67. SUTCLIFFE, R., & SADDLER, J. (1986). The Role of Lignin in the Adsorption of Cellulases During Enzymic Treatment of Lignocellulosic Material. Biotechnology And Bioengineering Symposium , 749-762. TAO, Y.M.; XU, X.Q.; MA, S.J.; LIANG, G.; WU, X.B.; LONG, M.N.; CHEN, Q.X. (2011) Cellulase Hydrolysis of Rice Straw and Inactivation of Endoglucanase in Urea Solution. Journal of agricultural and food chemistry, 59:10971-10975. TAVARES, E. (2010). Clonagem, expressão heteróloga, purificação e caracterização funcional da endoglicanase A de Aspergillus nidulan. Dissertação (Mestrado) Universidade de Brasília. Dissertação (Mestrado) Universidade de Brasília. THOMPSON, N. (1983). Hemicellulose as a biomass resource. In: Wood and Agricultural Residues; research on use for feed, fuels and chemicals. Soltes, J. (ed), J. New York, Academic Press , p. 101-119. TOMME, P. W. (1995). Cellulose hydrolysis by bacteria and fungi. Adv. Microb. Physiol. , 37:1-81. ÚNICA, U. D. (2010). www.unica.com.br. Acesso em 10 de fev de 2012 VINHA, F.N.M.D., OLIVEIRA, M.P.G., FRANCO, M.N., MACRAE, A., BON, E.P.S., NASCIMENTO, R.P. and COELHO, R.R.R. (2011) Cellulase production by Streptomyces viridobrunneus SCPE-09 using lignocellulosic biomass as inducer substrate. Appl Biochem Biotechnol 164:256-267. VOBIS, G. (1997) Mophology of actinomycetes. In: MIYADOH, S.; HAMADA, M.; HOTTA, K.; KUDO, T.; SEINO, A.; VOBIS, G.; YOKOTA, A. Atlas of actinomycetes. Japan: The Society of Actinomycetes, Askura Publishing CO., ltda, p. 180-191. WALTER, S., SCHREMPF, H. (1996) Physiological studies of cellulase (avicelase) synthesis in Streptomyces reticuli. Applied and Environmental Microbiology 62, 1065-1069. WANG, M., & WANG, J. &. (2011). Lignocellulosic Bioethanol: Status and Prospects. Energy Sources , 33:612–619. WANNER, L. A. (2007). A new strain of Streptomyces causing common scab in potato. Plant Dis., 91:352-359. WATANABE, H. N. (1998). A cellulase gene of termite origin. Nature , 394:330–331. WAKAECHUK, W.W.; SUNG, W.L.; CAMPBELL, R.L.; CUNNINGHAM, A.; WATSON, D.C.; YAGUCHI, M. (1994) Thermostabilization of the Bacillus circulans xylanase by the introduction of disulfide bonds. Protein Eng. 7(11):1379-1386. WESTBYE, P., KOHNKE, T., GLASSER, W., & GATENHOLM, P. (2007). The Influence of Lignin on the Selfassembly Behavior of Xylan Rich Fractions from Birch. CelluloseCellulose, Vol.14, pp. 603- , 14:603-613. WILLIAMS, S.T.; LANNING, S; WELLINGTON, M.H. (1984) Ecology of actinomycetes. In: GOODFELLOW, M., MORDARSKI, M. E WILLIAMS, S.T. (ed). The biology of actinomycetes. Lodon. Academic Press: 481-527. WILLIAMSON, R. B. (2002). Towards the mechanism of cellulose synthesis. Trends Plant Sci. , 7:461-467. WOODWARD, J. (1984). Xylanases: functions, properties and applications. Enzyme and Fermentation Biotechnology , 8:9-30. YOON, K.Y.; WOODAMS, E.E.; HANG, Y.D. (2006) Enzymatic production of pentoses from the hemiceluloses fraction of corn residues. LWT, 39:387-391. YOKOTA, A.(1997) Phylogenetic relationship of actinomycetes. In: MIYADOH, S.; HAMADA, M.; HOTTA, K.; KUDO, T.; SEINO, A.; VOBIS, G.; YOKOTA, A. Atlas of actinomycetes. Japan: The Society of Actinomycetes, Asakura Publishing CO., ltda, p. 194- 197. ZANG, J.; SIIKA-AHO, M.; PURANEN, T,; TANG, M.; TENKANEN, M., VIIKARIA, L. (2011) Thermoestable recombinant xylanases from Nonomuraea fleruosa and Thermoascus aurantiacus show distinct properties in the hydrolysis of xylan and pretreated wheat straw. Biotechnology for Biofuels, 4:12-25. XU, B. H. (2000). Purification, characterization and amino-acid sequence analysis of a thermostable, lowmolecular mass endo-b-1,4-glucanase from blue mussel, Mytilus edulis. Eur. J. Biochem. , 267:4970–4977. |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Biologia (ICB) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Ciências Biológicas - ICB (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/efc1c0a4-9d5f-4a0f-a820-8195c18d0c45/download http://repositorio.bc.ufg.br/tede/bitstreams/6f757ae1-76eb-4ec0-a754-56665bfd2049/download http://repositorio.bc.ufg.br/tede/bitstreams/33791039-0bee-44f5-a673-5d5c3f5ff960/download http://repositorio.bc.ufg.br/tede/bitstreams/d6fd6368-3911-4f9b-b724-92d14ccc88da/download http://repositorio.bc.ufg.br/tede/bitstreams/89d44b28-c519-41c3-b441-5a098b800e62/download http://repositorio.bc.ufg.br/tede/bitstreams/319cd180-d30e-4ffa-b5dd-61cd21d4714f/download http://repositorio.bc.ufg.br/tede/bitstreams/31cc8fb2-1744-4056-9824-1c6dd4302bfa/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f 1e0094e9d8adcf16b18effef4ce7ed83 9da0b6dfac957114c6a7714714b86306 aa3da530028732bcbc87f49ba9ea6725 c50643f1c6746c691cc408f1ee7faaa3 6f37f6d369235b77b80498d50dfb8b4d |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172587541495808 |