Newton's methods under the majorant principle on Riemannian manifolds

Detalhes bibliográficos
Autor(a) principal: Martins, Tiberio Bittencourt de Oliveira
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: eng
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/00130000022wf
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/4847
Resumo: Apresentamos, nesta tese, uma an álise da convergência do m étodo de Newton inexato com tolerância de erro residual relativa e uma an alise semi-local de m etodos de Newton robustos exato e inexato, objetivando encontrar uma singularidade de um campo de vetores diferenci avel de nido em uma variedade Riemanniana completa, baseados no princ pio majorante a m invariante. Sob hip oteses locais e considerando uma fun ção majorante geral, a Q-convergância linear do m etodo de Newton inexato com uma tolerância de erro residual relativa xa e provada. Na ausência dos erros, a an alise apresentada reobtem o teorema local cl assico sobre o m etodo de Newton no contexto Riemanniano. Na an alise semi-local dos m etodos exato e inexato de Newton apresentada, a cl assica condi ção de Lipschitz tamb em e relaxada usando uma fun ção majorante geral, permitindo estabelecer existência e unicidade local da solu ção, uni cando previamente resultados pertencentes ao m etodo de Newton. A an alise enfatiza a robustez, a saber, e dada uma bola prescrita em torno do ponto inicial que satifaz as hip oteses de Kantorovich, garantindo a convergência do m etodo para qualquer ponto inicial nesta bola. Al em disso, limitantes que dependem da função majorante para a taxa de convergência Q-quadr atica do m étodo exato e para a taxa de convergência Q-linear para o m etodo inexato são obtidos.
id UFG-2_bc3dd3750bfac5862de43651d411d0a6
oai_identifier_str oai:repositorio.bc.ufg.br:tede/4847
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Ferreira, Orizon Pereirahttp://lattes.cnpq.br/0201145506453251Ferreira, Orizon PereiraYun, Yuan JinAndreani, RobertoBello , José YunierBento, Glaydston de Carvalhohttp://lattes.cnpq.br/1431321280502484Martins, Tiberio Bittencourt de Oliveira2015-11-03T14:25:04Z2015-06-26MARTINS, T. B. O. Newton's methods under the majorant principle on Riemannian manifolds. 2015. 83 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2015.http://repositorio.bc.ufg.br/tede/handle/tede/4847ark:/38995/00130000022wfApresentamos, nesta tese, uma an álise da convergência do m étodo de Newton inexato com tolerância de erro residual relativa e uma an alise semi-local de m etodos de Newton robustos exato e inexato, objetivando encontrar uma singularidade de um campo de vetores diferenci avel de nido em uma variedade Riemanniana completa, baseados no princ pio majorante a m invariante. Sob hip oteses locais e considerando uma fun ção majorante geral, a Q-convergância linear do m etodo de Newton inexato com uma tolerância de erro residual relativa xa e provada. Na ausência dos erros, a an alise apresentada reobtem o teorema local cl assico sobre o m etodo de Newton no contexto Riemanniano. Na an alise semi-local dos m etodos exato e inexato de Newton apresentada, a cl assica condi ção de Lipschitz tamb em e relaxada usando uma fun ção majorante geral, permitindo estabelecer existência e unicidade local da solu ção, uni cando previamente resultados pertencentes ao m etodo de Newton. A an alise enfatiza a robustez, a saber, e dada uma bola prescrita em torno do ponto inicial que satifaz as hip oteses de Kantorovich, garantindo a convergência do m etodo para qualquer ponto inicial nesta bola. Al em disso, limitantes que dependem da função majorante para a taxa de convergência Q-quadr atica do m étodo exato e para a taxa de convergência Q-linear para o m etodo inexato são obtidos.A local convergence analysis with relative residual error tolerance of inexact Newton method and a semi-local analysis of a robust exact and inexact Newton methods are presented in this thesis, objecting to nd a singularity of a di erentiable vector eld de ned on a complete Riemannian manifold, based on a ne invariant majorant principle. Considering local assumptions and a general majorant function, the Q-linear convergence of inexact Newton method with a xed relative residual error tolerance is proved. In the absence of errors, the analysis presented retrieves the classical local theorem on Newton's method in Riemannian context. In the semi-local analysis of exact and inexact Newton methods presented, the classical Lipschitz condition is also relaxed by using a general majorant function, allowing to establish the existence and also local uniqueness of the solution, unifying previous results pertaining Newton's method. The analysis emphasizes robustness, being more speci c, is given a prescribed ball around the point satisfying Kantorovich's assumptions, ensuring convergence of the method for any starting point in this ball. Furthermore, the bounds depending on the majorant function for Q-quadratic convergence rate of the exact method and Q-linear convergence rate of the inexact method are obtained.Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2015-10-29T19:04:41Z No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:25:04Z (GMT) No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2015-11-03T14:25:04Z (GMT). No. of bitstreams: 2 Tese - Tiberio Bittencourt de Oliveira Martins.pdf: 1155588 bytes, checksum: add1eac74c4397efc29678341b834448 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-06-26Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/22388/Tese%20-%20Tiberio%20Bittencourt%20de%20Oliveira%20Martins.pdf.jpgengUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessMétodo de Newton inexatoAnálise de convergência localAnálise de convergência semi-localTeorema de Kantorovich robustoPrincípio majoranteCampo de vetoresVariedades riemannianasInexact Newton methodLocal convergence analysisSemi-local convergence analysisRobust Kantorovich's theoremVector eldMajorant principleRiemannian manifoldsMATEMATICA::ANALISENewton's methods under the majorant principle on Riemannian manifoldsMétodos de Newton sob o princípio majorante em variedades riemannianasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-4268777512335152015-7136646421940042372075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/dac0757d-e998-40e1-ba8e-8bda461c275f/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/bba032b6-30af-4499-b325-47c55721ca13/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-821328http://repositorio.bc.ufg.br/tede/bitstreams/7cc68b52-cd45-4051-843d-9b36a305b35e/download683d9883b2ad62ac3b8bafc566b2e600MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/b6d6ef85-6ff7-451d-a14c-12f52e08d805/download9da0b6dfac957114c6a7714714b86306MD54ORIGINALTese - Tiberio Bittencourt de Oliveira Martins.pdfTese - Tiberio Bittencourt de Oliveira Martins.pdfapplication/pdf1155588http://repositorio.bc.ufg.br/tede/bitstreams/a1fbdbdd-6655-45bc-8633-0187093bc5f5/downloadadd1eac74c4397efc29678341b834448MD55TEXTTese - Tiberio Bittencourt de Oliveira Martins.pdf.txtTese - Tiberio Bittencourt de Oliveira Martins.pdf.txtExtracted Texttext/plain165992http://repositorio.bc.ufg.br/tede/bitstreams/21ae8187-e79f-4ec1-9189-1080a26c5b82/downloadfb2a9ca6ece23561716798a9a83ce6e3MD56THUMBNAILTese - Tiberio Bittencourt de Oliveira Martins.pdf.jpgTese - Tiberio Bittencourt de Oliveira Martins.pdf.jpgGenerated Thumbnailimage/jpeg3973http://repositorio.bc.ufg.br/tede/bitstreams/14e325c4-d4b8-4037-b7fd-e0eab2c7bc98/download536cc04f2bc1b632f7e2bda3de9c3911MD57tede/48472015-11-04 03:07:08.463http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/4847http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2015-11-04T05:07:08Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Newton's methods under the majorant principle on Riemannian manifolds
dc.title.alternative.por.fl_str_mv Métodos de Newton sob o princípio majorante em variedades riemannianas
title Newton's methods under the majorant principle on Riemannian manifolds
spellingShingle Newton's methods under the majorant principle on Riemannian manifolds
Martins, Tiberio Bittencourt de Oliveira
Método de Newton inexato
Análise de convergência local
Análise de convergência semi-local
Teorema de Kantorovich robusto
Princípio majorante
Campo de vetores
Variedades riemannianas
Inexact Newton method
Local convergence analysis
Semi-local convergence analysis
Robust Kantorovich's theorem
Vector eld
Majorant principle
Riemannian manifolds
MATEMATICA::ANALISE
title_short Newton's methods under the majorant principle on Riemannian manifolds
title_full Newton's methods under the majorant principle on Riemannian manifolds
title_fullStr Newton's methods under the majorant principle on Riemannian manifolds
title_full_unstemmed Newton's methods under the majorant principle on Riemannian manifolds
title_sort Newton's methods under the majorant principle on Riemannian manifolds
author Martins, Tiberio Bittencourt de Oliveira
author_facet Martins, Tiberio Bittencourt de Oliveira
author_role author
dc.contributor.advisor1.fl_str_mv Ferreira, Orizon Pereira
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/0201145506453251
dc.contributor.referee1.fl_str_mv Ferreira, Orizon Pereira
dc.contributor.referee2.fl_str_mv Yun, Yuan Jin
dc.contributor.referee3.fl_str_mv Andreani, Roberto
dc.contributor.referee4.fl_str_mv Bello , José Yunier
dc.contributor.referee5.fl_str_mv Bento, Glaydston de Carvalho
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/1431321280502484
dc.contributor.author.fl_str_mv Martins, Tiberio Bittencourt de Oliveira
contributor_str_mv Ferreira, Orizon Pereira
Ferreira, Orizon Pereira
Yun, Yuan Jin
Andreani, Roberto
Bello , José Yunier
Bento, Glaydston de Carvalho
dc.subject.por.fl_str_mv Método de Newton inexato
Análise de convergência local
Análise de convergência semi-local
Teorema de Kantorovich robusto
Princípio majorante
Campo de vetores
Variedades riemannianas
topic Método de Newton inexato
Análise de convergência local
Análise de convergência semi-local
Teorema de Kantorovich robusto
Princípio majorante
Campo de vetores
Variedades riemannianas
Inexact Newton method
Local convergence analysis
Semi-local convergence analysis
Robust Kantorovich's theorem
Vector eld
Majorant principle
Riemannian manifolds
MATEMATICA::ANALISE
dc.subject.eng.fl_str_mv Inexact Newton method
Local convergence analysis
Semi-local convergence analysis
Robust Kantorovich's theorem
Vector eld
Majorant principle
Riemannian manifolds
dc.subject.cnpq.fl_str_mv MATEMATICA::ANALISE
description Apresentamos, nesta tese, uma an álise da convergência do m étodo de Newton inexato com tolerância de erro residual relativa e uma an alise semi-local de m etodos de Newton robustos exato e inexato, objetivando encontrar uma singularidade de um campo de vetores diferenci avel de nido em uma variedade Riemanniana completa, baseados no princ pio majorante a m invariante. Sob hip oteses locais e considerando uma fun ção majorante geral, a Q-convergância linear do m etodo de Newton inexato com uma tolerância de erro residual relativa xa e provada. Na ausência dos erros, a an alise apresentada reobtem o teorema local cl assico sobre o m etodo de Newton no contexto Riemanniano. Na an alise semi-local dos m etodos exato e inexato de Newton apresentada, a cl assica condi ção de Lipschitz tamb em e relaxada usando uma fun ção majorante geral, permitindo estabelecer existência e unicidade local da solu ção, uni cando previamente resultados pertencentes ao m etodo de Newton. A an alise enfatiza a robustez, a saber, e dada uma bola prescrita em torno do ponto inicial que satifaz as hip oteses de Kantorovich, garantindo a convergência do m etodo para qualquer ponto inicial nesta bola. Al em disso, limitantes que dependem da função majorante para a taxa de convergência Q-quadr atica do m étodo exato e para a taxa de convergência Q-linear para o m etodo inexato são obtidos.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-11-03T14:25:04Z
dc.date.issued.fl_str_mv 2015-06-26
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv MARTINS, T. B. O. Newton's methods under the majorant principle on Riemannian manifolds. 2015. 83 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2015.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/4847
dc.identifier.dark.fl_str_mv ark:/38995/00130000022wf
identifier_str_mv MARTINS, T. B. O. Newton's methods under the majorant principle on Riemannian manifolds. 2015. 83 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2015.
ark:/38995/00130000022wf
url http://repositorio.bc.ufg.br/tede/handle/tede/4847
dc.language.iso.fl_str_mv eng
language eng
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv -713664642194004237
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/dac0757d-e998-40e1-ba8e-8bda461c275f/download
http://repositorio.bc.ufg.br/tede/bitstreams/bba032b6-30af-4499-b325-47c55721ca13/download
http://repositorio.bc.ufg.br/tede/bitstreams/7cc68b52-cd45-4051-843d-9b36a305b35e/download
http://repositorio.bc.ufg.br/tede/bitstreams/b6d6ef85-6ff7-451d-a14c-12f52e08d805/download
http://repositorio.bc.ufg.br/tede/bitstreams/a1fbdbdd-6655-45bc-8633-0187093bc5f5/download
http://repositorio.bc.ufg.br/tede/bitstreams/21ae8187-e79f-4ec1-9189-1080a26c5b82/download
http://repositorio.bc.ufg.br/tede/bitstreams/14e325c4-d4b8-4037-b7fd-e0eab2c7bc98/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
683d9883b2ad62ac3b8bafc566b2e600
9da0b6dfac957114c6a7714714b86306
add1eac74c4397efc29678341b834448
fb2a9ca6ece23561716798a9a83ce6e3
536cc04f2bc1b632f7e2bda3de9c3911
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172530603819008