A comparative study of text classification techniques for hate speech detection
Autor(a) principal: | |
---|---|
Data de Publicação: | 2022 |
Tipo de documento: | Dissertação |
Idioma: | eng |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/00130000001p1 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/13276 |
Resumo: | The dissemination of hate speech on the Internet, specially on social media platforms, has been a serious and recurrent problem. In the present study, we compare eleven methods for classifying hate speech, including traditional machine learning methods, neural network-based approaches and transformers, as well as their combination with eight techniques to address the class imbalance problem, which is a recurrent issue in hate speech classification. The data transformation techniques we investigated include data resampling techniques and a modification of a technique based on compound features (c_features).All models have been tested on seven datasets with varying specificity, following a rigorous experimentation protocol that includes cross-validation and the use of appropriate evaluation metrics, as well as validation of the results through appropriate statistical tests for multiple comparisons. To our knowledge, there is no broader comparative study in data enhancing techniques for hate speech detection, nor any work that combine data resampling techniques with transformers. Our extensive experimentation, based on over 2,900measurements, reveal that most data resampling techniques are ineffective to enhance the effectiveness of classifiers, with the exception of ROS which improves most classification methods, including the transformers. For the smallest dataset, ROS provided gains of 60.43% and 33.47% for BERT and RoBERTa, respectively. The experiments revealed that c_features improved all classification methods that they could be combined with. The compound features technique provided satisfactory gains of up to 7.8% for SVM. Finally,we investigate cost-effectiveness for a few of the best classification methods. This analysis provided confirmation that the traditional method Logistic Regression (LR) combined with the use of c_features can provide great effectiveness with low overhead in all datasets considered |
id |
UFG-2_be6e618c034482878074acf9a062c001 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/13276 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Rosa, Thierson Coutohttp://lattes.cnpq.br/4414718560764818Rosa, Thierson CoutoMoura, Edleno Silva deSilva, Nádia Félix Felipe dahttp://lattes.cnpq.br/3093346314417983Silva, Rodolfo Costa Cezar da2024-02-27T15:03:38Z2024-02-27T15:03:38Z2022-01-27SILVA, R. C. C. A comparative study of text classification techniques for hate speech detection. 2022. 72 f. Dissertação (Mestrado em Ciências Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2022.http://repositorio.bc.ufg.br/tede/handle/tede/13276ark:/38995/00130000001p1The dissemination of hate speech on the Internet, specially on social media platforms, has been a serious and recurrent problem. In the present study, we compare eleven methods for classifying hate speech, including traditional machine learning methods, neural network-based approaches and transformers, as well as their combination with eight techniques to address the class imbalance problem, which is a recurrent issue in hate speech classification. The data transformation techniques we investigated include data resampling techniques and a modification of a technique based on compound features (c_features).All models have been tested on seven datasets with varying specificity, following a rigorous experimentation protocol that includes cross-validation and the use of appropriate evaluation metrics, as well as validation of the results through appropriate statistical tests for multiple comparisons. To our knowledge, there is no broader comparative study in data enhancing techniques for hate speech detection, nor any work that combine data resampling techniques with transformers. Our extensive experimentation, based on over 2,900measurements, reveal that most data resampling techniques are ineffective to enhance the effectiveness of classifiers, with the exception of ROS which improves most classification methods, including the transformers. For the smallest dataset, ROS provided gains of 60.43% and 33.47% for BERT and RoBERTa, respectively. The experiments revealed that c_features improved all classification methods that they could be combined with. The compound features technique provided satisfactory gains of up to 7.8% for SVM. Finally,we investigate cost-effectiveness for a few of the best classification methods. This analysis provided confirmation that the traditional method Logistic Regression (LR) combined with the use of c_features can provide great effectiveness with low overhead in all datasets consideredA disseminação do discurso de ódio na Internet, especialmente nas plataformas de redes sociais, tem sido um problema recorrente. No presente estudo, comparamos onze métodos de classificação para discurso de ódio, incluindo métodos tradicionais de aprendizado de máquina, abordagens baseadas em redes neurais e Transformers, assim como a combinação com oito técnicas para resolver o problema de desbalanceamento de classes,uma característica inerente à classificação de discurso de ódio. As técnicas de transformação de dados que investigamos incluem técnicas de reamostragem de dados e uma modificação de uma técnica baseada em features compostas (c_features). Todos os modelos foram testados em sete coleções de dados com especificidades variadas, seguindo um rigoroso protocolo de experimentação que inclui validação cruzada e o uso de métricas apropriadas, bem como a validação dos resultados por meio de testes estatísticos apropriados para comparações múltiplas. Até onde sabemos, não há estudo comparativo mais amplo em técnicas de expansão de dados para detecção de discurso de ódio, nem qualquer trabalho que combine técnicas de reamostragem de dados com Transformers. Nossa extensa experimentação, baseada em mais de 2.900 medições, revela que a maioria das técnicas de reamostragem de dados são ineficazes para aumentar a eficácia dos classificadores, com exceção da técnica de Random Oversampling (ROS) que melhora a maioria dos métodos de classificação, incluindo os Transformers. Para a menor coleção de dados, ROS proporcionou ganhos de 60,43% e 33,47% para BERT e RoBERTa,respectivamente. Os experimentos revelaram que a técnica de c_features melhorou todos os métodos de classificação com os quais ele pôde ser combinado. A técnica de features compostas proporcionou ganhos satisfatórios de até 7,8% para SVM. Finalmente, investigamos a relação custo-efetividade de alguns dos melhores métodos de classificação. Essa análise confirmou que o método tradicional de Regressão Logística (LR) combinado como uso de c_features proporciona grande eficácia com baixo overhead em todas as coleções de dados consideradas.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2024-02-23T17:17:52Z workflow start=Step: editstep - action:claimaction No. of bitstreams: 2 Dissertação - Rodolfo Costa Cezar da Silva - 2022.pdf: 4201587 bytes, checksum: b3a294341a032cfe63503a0de32e5fc6 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Step: editstep - action:editaction Approved for entry into archive by Luciana Ferreira(lucgeral@gmail.com) on 2024-02-27T15:03:38Z (GMT)Made available in DSpace on 2024-02-27T15:03:38Z (GMT). No. of bitstreams: 2 Dissertação - Rodolfo Costa Cezar da Silva - 2022.pdf: 4201587 bytes, checksum: b3a294341a032cfe63503a0de32e5fc6 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2022-01-27Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESengUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RMG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessClassificação de textoDesbalanceamento de classesDetecção de discurso de ódioAprendizado de máquinaText classificationClass imbalanceHate speech detectionMachine learningCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOA comparative study of text classification techniques for hate speech detectionUm estudo comparativo de técnicas de classificação de texto para detecção de discurso de ódioinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/93f61b88-00f8-45c6-bef8-1ff2dc88392b/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALDissertação - Rodolfo Costa Cezar da Silva - 2022.pdfDissertação - Rodolfo Costa Cezar da Silva - 2022.pdfapplication/pdf4201587http://repositorio.bc.ufg.br/tede/bitstreams/7de1363e-8489-4608-9032-fbc04410d4d8/downloadb3a294341a032cfe63503a0de32e5fc6MD52CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/5cd4a14f-97c8-427a-b99e-056d56c77f2e/download4460e5956bc1d1639be9ae6146a50347MD52tede/132762024-02-27 12:03:38.54http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/13276http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2024-02-27T15:03:38Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.none.fl_str_mv |
A comparative study of text classification techniques for hate speech detection |
dc.title.alternative.por.fl_str_mv |
Um estudo comparativo de técnicas de classificação de texto para detecção de discurso de ódio |
title |
A comparative study of text classification techniques for hate speech detection |
spellingShingle |
A comparative study of text classification techniques for hate speech detection Silva, Rodolfo Costa Cezar da Classificação de texto Desbalanceamento de classes Detecção de discurso de ódio Aprendizado de máquina Text classification Class imbalance Hate speech detection Machine learning CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
A comparative study of text classification techniques for hate speech detection |
title_full |
A comparative study of text classification techniques for hate speech detection |
title_fullStr |
A comparative study of text classification techniques for hate speech detection |
title_full_unstemmed |
A comparative study of text classification techniques for hate speech detection |
title_sort |
A comparative study of text classification techniques for hate speech detection |
author |
Silva, Rodolfo Costa Cezar da |
author_facet |
Silva, Rodolfo Costa Cezar da |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Rosa, Thierson Couto |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4414718560764818 |
dc.contributor.referee1.fl_str_mv |
Rosa, Thierson Couto |
dc.contributor.referee2.fl_str_mv |
Moura, Edleno Silva de |
dc.contributor.referee3.fl_str_mv |
Silva, Nádia Félix Felipe da |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/3093346314417983 |
dc.contributor.author.fl_str_mv |
Silva, Rodolfo Costa Cezar da |
contributor_str_mv |
Rosa, Thierson Couto Rosa, Thierson Couto Moura, Edleno Silva de Silva, Nádia Félix Felipe da |
dc.subject.por.fl_str_mv |
Classificação de texto Desbalanceamento de classes Detecção de discurso de ódio Aprendizado de máquina |
topic |
Classificação de texto Desbalanceamento de classes Detecção de discurso de ódio Aprendizado de máquina Text classification Class imbalance Hate speech detection Machine learning CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Text classification Class imbalance Hate speech detection Machine learning |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
The dissemination of hate speech on the Internet, specially on social media platforms, has been a serious and recurrent problem. In the present study, we compare eleven methods for classifying hate speech, including traditional machine learning methods, neural network-based approaches and transformers, as well as their combination with eight techniques to address the class imbalance problem, which is a recurrent issue in hate speech classification. The data transformation techniques we investigated include data resampling techniques and a modification of a technique based on compound features (c_features).All models have been tested on seven datasets with varying specificity, following a rigorous experimentation protocol that includes cross-validation and the use of appropriate evaluation metrics, as well as validation of the results through appropriate statistical tests for multiple comparisons. To our knowledge, there is no broader comparative study in data enhancing techniques for hate speech detection, nor any work that combine data resampling techniques with transformers. Our extensive experimentation, based on over 2,900measurements, reveal that most data resampling techniques are ineffective to enhance the effectiveness of classifiers, with the exception of ROS which improves most classification methods, including the transformers. For the smallest dataset, ROS provided gains of 60.43% and 33.47% for BERT and RoBERTa, respectively. The experiments revealed that c_features improved all classification methods that they could be combined with. The compound features technique provided satisfactory gains of up to 7.8% for SVM. Finally,we investigate cost-effectiveness for a few of the best classification methods. This analysis provided confirmation that the traditional method Logistic Regression (LR) combined with the use of c_features can provide great effectiveness with low overhead in all datasets considered |
publishDate |
2022 |
dc.date.issued.fl_str_mv |
2022-01-27 |
dc.date.accessioned.fl_str_mv |
2024-02-27T15:03:38Z |
dc.date.available.fl_str_mv |
2024-02-27T15:03:38Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, R. C. C. A comparative study of text classification techniques for hate speech detection. 2022. 72 f. Dissertação (Mestrado em Ciências Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2022. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/13276 |
dc.identifier.dark.fl_str_mv |
ark:/38995/00130000001p1 |
identifier_str_mv |
SILVA, R. C. C. A comparative study of text classification techniques for hate speech detection. 2022. 72 f. Dissertação (Mestrado em Ciências Computação) - Instituto de Informática, Universidade Federal de Goiás, Goiânia, 2022. ark:/38995/00130000001p1 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/13276 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RMG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/93f61b88-00f8-45c6-bef8-1ff2dc88392b/download http://repositorio.bc.ufg.br/tede/bitstreams/7de1363e-8489-4608-9032-fbc04410d4d8/download http://repositorio.bc.ufg.br/tede/bitstreams/5cd4a14f-97c8-427a-b99e-056d56c77f2e/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 b3a294341a032cfe63503a0de32e5fc6 4460e5956bc1d1639be9ae6146a50347 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172508013297664 |