Previsão e classificação textural do solo através da análise multivariada de imagens
Autor(a) principal: | |
---|---|
Data de Publicação: | 2016 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/9883 |
Resumo: | The texture or grain size of the surface are de ned by the quantitative distribution of the mineral particles smaller than 2 mm: sand, clay and silt. These physical indicators enable soil classi cation and guide the management, irrigation and the addition of agricultural inputs. Although the usual methods for textural analysis are laborious and destructive, using chemical oxidizing agents, this kind of analysis is quite required in soil fertility laboratories. Therefore, it is essential to research and develop alternative methodologies that are operational and clean. In this way, this study proposes the use of multivariate analysis of digital images to predict and classify soil texture. For this purpose, 60 samples of diverse soil were considered to textural analysis by the pipette method and for obtaining digital images in color system RGB (Red, Green, Blue) in Ti format. The correlation between digital images and the percentage of sand, clay and silt is made by Partial Least Squares Regression (PLS) and Multiple Linear Regression algorithm associated with the Successive Projections (SPA-MLR). The best models had a 100 % success rate. Therefore, the prediction texture soil through images is a promising technique to be clean, inexpensive and operational. |
id |
UFG-2_c7a9d225ba92baca5c6c945a94dc93f7 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/9883 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Oliveira, Anselmo Elcana dehttp://lattes.cnpq.br/0369339073291948Oliveira, Anselmo Elcana deCoelho, Clarimar JoséAntoniosi Filho, Nelson Robertohttp://buscatextual.cnpq.br/buscatextual/busca.doMorais, Pedro Augusto de Oliveira2019-08-02T14:00:56Z2016-03-08MORAIS, Pedro Augusto de Oliveira. Previsão e classificação textural do solo através da análise multivariada de imagens. 2016. 190 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2016.http://repositorio.bc.ufg.br/tede/handle/tede/9883The texture or grain size of the surface are de ned by the quantitative distribution of the mineral particles smaller than 2 mm: sand, clay and silt. These physical indicators enable soil classi cation and guide the management, irrigation and the addition of agricultural inputs. Although the usual methods for textural analysis are laborious and destructive, using chemical oxidizing agents, this kind of analysis is quite required in soil fertility laboratories. Therefore, it is essential to research and develop alternative methodologies that are operational and clean. In this way, this study proposes the use of multivariate analysis of digital images to predict and classify soil texture. For this purpose, 60 samples of diverse soil were considered to textural analysis by the pipette method and for obtaining digital images in color system RGB (Red, Green, Blue) in Ti format. The correlation between digital images and the percentage of sand, clay and silt is made by Partial Least Squares Regression (PLS) and Multiple Linear Regression algorithm associated with the Successive Projections (SPA-MLR). The best models had a 100 % success rate. Therefore, the prediction texture soil through images is a promising technique to be clean, inexpensive and operational.A textura, ou granulometria, do solo e de nida pela distribui c~ao quantitativa das part culas minerais menores que 2 mm: areia, argila e silte. Esses indicadores f sicos possibilitam a classi ca c~ao do solo e orientam o manejo, a irriga c~ao e a adi c~ao de insumos agr colas. As metodologias usuais para an alise textural s~ao laboriosas, destrutivas, utilizam agentes qu micos oxidantes e essa an alise e bastante requisitada nos laborat orios de an alise da fertilidade do solo. Logo, s~ao imprescind veis investiga c~oes e o desenvolvimento de metodologias alternativas que sejam operacionais e limpas. Nessa dire c~ao, esse estudo prop~oe a utiliza c~ao de an alise multivariada de imagens digitais para previs~ao da textura do solo e classi ca c~ao. Para tanto, 60 amostras de solo diversi cadas foram consideradas para an alise textural pelo m etodo da pipeta e para obten c~ao de imagens digitais no sistema de cor RGB (Red, Green, Blue) em formato Ti . A correla c~ao entre as imagens digitais e os teores de areia, argila e silte for feita por Regress~ao por Quadrados M nimos Parciais (PLS) e por Regress~ao Linear M ultipla associada com o Algoritmo das Proje c~oes Sucessivas (SPA-RLM). Os melhores modelos apresentaram um ndice de acerto de 100%. Portanto, a predi c~ao textural do solo atrav es de imagens e uma t ecnica promissora por ser limpa, barata e operacional.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2019-07-22T18:30:41Z No. of bitstreams: 2 Dissertação - Pedro Augusto de Oliveira Morais - 2016.pdf: 6322107 bytes, checksum: 2ee5e88e9bdb444751edb814d3f78f66 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2019-08-02T14:00:56Z (GMT) No. of bitstreams: 2 Dissertação - Pedro Augusto de Oliveira Morais - 2016.pdf: 6322107 bytes, checksum: 2ee5e88e9bdb444751edb814d3f78f66 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2019-08-02T14:00:56Z (GMT). No. of bitstreams: 2 Dissertação - Pedro Augusto de Oliveira Morais - 2016.pdf: 6322107 bytes, checksum: 2ee5e88e9bdb444751edb814d3f78f66 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2016-03-08Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Química (IQ)UFGBrasilInstituto de Química - IQ (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessClassificação texturalImagem digitalPLSSPA-RLMTextural classificationDigital imageMLR-SPACIENCIAS EXATAS E DA TERRA::QUIMICAPrevisão e classificação textural do solo através da análise multivariada de imagensPrediction and soil texture classification by multivariate image analysisinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis663693921325415158600600600600782606674374119727815717003253031171952075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/281efb43-8e8b-4221-9014-c1e4879397d2/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/3b250032-adac-47c4-bf3c-812d697fc83f/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/46c0a464-c7e2-4cac-8234-ae79b8c274a7/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/d3f6b2c5-5c34-409c-a31d-b532e2f2b7b8/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Pedro Augusto de Oliveira Morais - 2016.pdfDissertação - Pedro Augusto de Oliveira Morais - 2016.pdfapplication/pdf6322107http://repositorio.bc.ufg.br/tede/bitstreams/0d931e39-e21d-485b-b148-165b37a91420/download2ee5e88e9bdb444751edb814d3f78f66MD55tede/98832019-08-02 11:00:56.343http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/9883http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-08-02T14:00:56Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Previsão e classificação textural do solo através da análise multivariada de imagens |
dc.title.alternative.eng.fl_str_mv |
Prediction and soil texture classification by multivariate image analysis |
title |
Previsão e classificação textural do solo através da análise multivariada de imagens |
spellingShingle |
Previsão e classificação textural do solo através da análise multivariada de imagens Morais, Pedro Augusto de Oliveira Classificação textural Imagem digital PLS SPA-RLM Textural classification Digital image MLR-SPA CIENCIAS EXATAS E DA TERRA::QUIMICA |
title_short |
Previsão e classificação textural do solo através da análise multivariada de imagens |
title_full |
Previsão e classificação textural do solo através da análise multivariada de imagens |
title_fullStr |
Previsão e classificação textural do solo através da análise multivariada de imagens |
title_full_unstemmed |
Previsão e classificação textural do solo através da análise multivariada de imagens |
title_sort |
Previsão e classificação textural do solo através da análise multivariada de imagens |
author |
Morais, Pedro Augusto de Oliveira |
author_facet |
Morais, Pedro Augusto de Oliveira |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Oliveira, Anselmo Elcana de |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/0369339073291948 |
dc.contributor.referee1.fl_str_mv |
Oliveira, Anselmo Elcana de |
dc.contributor.referee2.fl_str_mv |
Coelho, Clarimar José |
dc.contributor.referee3.fl_str_mv |
Antoniosi Filho, Nelson Roberto |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/busca.do |
dc.contributor.author.fl_str_mv |
Morais, Pedro Augusto de Oliveira |
contributor_str_mv |
Oliveira, Anselmo Elcana de Oliveira, Anselmo Elcana de Coelho, Clarimar José Antoniosi Filho, Nelson Roberto |
dc.subject.por.fl_str_mv |
Classificação textural Imagem digital PLS SPA-RLM |
topic |
Classificação textural Imagem digital PLS SPA-RLM Textural classification Digital image MLR-SPA CIENCIAS EXATAS E DA TERRA::QUIMICA |
dc.subject.eng.fl_str_mv |
Textural classification Digital image MLR-SPA |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::QUIMICA |
description |
The texture or grain size of the surface are de ned by the quantitative distribution of the mineral particles smaller than 2 mm: sand, clay and silt. These physical indicators enable soil classi cation and guide the management, irrigation and the addition of agricultural inputs. Although the usual methods for textural analysis are laborious and destructive, using chemical oxidizing agents, this kind of analysis is quite required in soil fertility laboratories. Therefore, it is essential to research and develop alternative methodologies that are operational and clean. In this way, this study proposes the use of multivariate analysis of digital images to predict and classify soil texture. For this purpose, 60 samples of diverse soil were considered to textural analysis by the pipette method and for obtaining digital images in color system RGB (Red, Green, Blue) in Ti format. The correlation between digital images and the percentage of sand, clay and silt is made by Partial Least Squares Regression (PLS) and Multiple Linear Regression algorithm associated with the Successive Projections (SPA-MLR). The best models had a 100 % success rate. Therefore, the prediction texture soil through images is a promising technique to be clean, inexpensive and operational. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-03-08 |
dc.date.accessioned.fl_str_mv |
2019-08-02T14:00:56Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
MORAIS, Pedro Augusto de Oliveira. Previsão e classificação textural do solo através da análise multivariada de imagens. 2016. 190 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2016. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/9883 |
identifier_str_mv |
MORAIS, Pedro Augusto de Oliveira. Previsão e classificação textural do solo através da análise multivariada de imagens. 2016. 190 f. Dissertação (Mestrado em Química) - Universidade Federal de Goiás, Goiânia, 2016. |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/9883 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
663693921325415158 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
7826066743741197278 |
dc.relation.cnpq.fl_str_mv |
1571700325303117195 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Química (IQ) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Química - IQ (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/281efb43-8e8b-4221-9014-c1e4879397d2/download http://repositorio.bc.ufg.br/tede/bitstreams/3b250032-adac-47c4-bf3c-812d697fc83f/download http://repositorio.bc.ufg.br/tede/bitstreams/46c0a464-c7e2-4cac-8234-ae79b8c274a7/download http://repositorio.bc.ufg.br/tede/bitstreams/d3f6b2c5-5c34-409c-a31d-b532e2f2b7b8/download http://repositorio.bc.ufg.br/tede/bitstreams/0d931e39-e21d-485b-b148-165b37a91420/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 2ee5e88e9bdb444751edb814d3f78f66 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1823229525762244608 |