PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000007s63 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/11733 |
Resumo: | Vision is one of the human senses that help development since birth, being of paramount importance for cognitive, social, and motor skills. The World Health Organization (WHO) points out that the number of children with ophthalmic abnormalities should increase by about 200 million between 2000 and 2050. Dynamic pupillometry is an exam that captures immutable pupillary behavior, such as its change in involuntary size, aiming to diagnose eye disorders and diseases. Since these pathologies being severe in children and the potential of pupillometry analysis for their diagnosis, this work proposes a method for diagnosing ophthalmic abnormalities using machine learning techniques and intelligent algorithms. Thus, the method autonomously extracts pupillary information from pupillometry exams and applies a classifier model to distinguish newborns between normal and altered clinical conditions within the ophthalmological context. This model intends to be a trial screening method that could help health professionals diagnose newborns' ophthalmological abnormalities. In addition, an annotated benchmark, which was manually developed in this study, is available and presents the context and highlights the obstacles in working with pupillometry exams in newborns. The algorithms proposed by this work were evaluated and compared with the ElSe and ExCuSe algorithms, state-of-the-art algorithms in the subject of pupillary tracking applied to the scope of this study. In conclusion, it presented a classifier model capable of differentiating newborns with diseased diagnosis in the ophthalmic field with an accuracy close to 81% under the available dataset. |
id |
UFG-2_d0c45429d3de2c9fc2511124f2b4ea48 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/11733 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Camilo Júnior, Celso Gonçalveshttp://lattes.cnpq.br/6776569904919279Camilo Júnior, Celso GonçalvesNaves, Eduardo Lázaro MartinsRosa, Thierson Coutohttp://lattes.cnpq.br/6930019751033452Silva, Marcos Vinicius Ribeiro2021-11-08T13:11:09Z2021-11-08T13:11:09Z2021-07-29SILVA, M. V. R. PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar. 2021. 79 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11733ark:/38995/0013000007s63Vision is one of the human senses that help development since birth, being of paramount importance for cognitive, social, and motor skills. The World Health Organization (WHO) points out that the number of children with ophthalmic abnormalities should increase by about 200 million between 2000 and 2050. Dynamic pupillometry is an exam that captures immutable pupillary behavior, such as its change in involuntary size, aiming to diagnose eye disorders and diseases. Since these pathologies being severe in children and the potential of pupillometry analysis for their diagnosis, this work proposes a method for diagnosing ophthalmic abnormalities using machine learning techniques and intelligent algorithms. Thus, the method autonomously extracts pupillary information from pupillometry exams and applies a classifier model to distinguish newborns between normal and altered clinical conditions within the ophthalmological context. This model intends to be a trial screening method that could help health professionals diagnose newborns' ophthalmological abnormalities. In addition, an annotated benchmark, which was manually developed in this study, is available and presents the context and highlights the obstacles in working with pupillometry exams in newborns. The algorithms proposed by this work were evaluated and compared with the ElSe and ExCuSe algorithms, state-of-the-art algorithms in the subject of pupillary tracking applied to the scope of this study. In conclusion, it presented a classifier model capable of differentiating newborns with diseased diagnosis in the ophthalmic field with an accuracy close to 81% under the available dataset.A visão é um dos sentidos que auxilia no desenvolvimento do ser humano desde seu nascimento, sendo de suma importância para as habilidades cognitivas, sociais e motoras. A Organização Mundial da Saúde (OMS) aponta que o número de crianças com anormalidades oftalmológicas deve aumentar em cerca de 200 milhões entre os anos de 2000 e 2050. A pupilometria dinâmica é um exame que captura informações do comportamento pupilar imutável, como sua alteração de tamanho de forma involuntária, visando diagnosticar anormalidades neurais e oftalmológicas. Considerando a gravidade dessas patologias em crianças e o potencial da análise da pupilometria para o diagnóstico das mesmas, este trabalho propõe um método de diagnóstico de anormalidades oftalmológicas em recém-nascidos baseado em dados da dinâmica pupilar e algoritmos de inteligência artificial. Assim, o método extrai as informações pupilares dos exames de pupilometria de forma autônoma e aplica um modelo classificador capaz de distinguir recém-nascidos entre os quadros clínicos normais e alterados dentro do contexto oftalmológico. Em complemento, também é disponibilizado um benchmark anotado manualmente, desenvolvido neste estudo, e que apresenta o contexto e realça os obstáculos em se trabalhar com exames de pupilometria de recém-nascidos. Os algoritmos propostos por este trabalho foram avaliados e comparados com os algoritmos ElSe e ExCuSe, algoritmos estado da arte no assunto de rastreamento pupilar aplicados a esfera deste estudo. Em conclusão, um modelo classificador capaz de diferenciar recém-nascidos com diagnóstico anormal no campo oftalmológico com precisão próxima de 81% sob o conjunto de dados disponível foi apresentado.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2021-11-05T11:36:00Z No. of bitstreams: 2 Dissertação - Marcos Vinicius Ribeiro Silva - 2021.pdf: 8908248 bytes, checksum: dc24f8654223621a222b00d575fe3735 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-11-08T13:11:08Z (GMT) No. of bitstreams: 2 Dissertação - Marcos Vinicius Ribeiro Silva - 2021.pdf: 8908248 bytes, checksum: dc24f8654223621a222b00d575fe3735 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2021-11-08T13:11:09Z (GMT). No. of bitstreams: 2 Dissertação - Marcos Vinicius Ribeiro Silva - 2021.pdf: 8908248 bytes, checksum: dc24f8654223621a222b00d575fe3735 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2021-07-29Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAnormalidade oftalmológicaDinâmica pupilarRecém-nascidoSistema automatizado de pupilometriaDiagnósticoOphthalmological abnormalityPupil dynamicsNewbornAutomated pupillometry systemDiagnosisCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOPupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilarPupRN: a method for ophthalmic abnormalities diagnosis in newborn based on pupillary dynamicsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis20500500500500261841reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/20b44b69-2126-469d-8c37-f9920dcf4b0f/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/48ae2638-3dfb-40fb-97ed-2f85ecda0556/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALDissertação - Marcos Vinicius Ribeiro Silva - 2021.pdfDissertação - Marcos Vinicius Ribeiro Silva - 2021.pdfapplication/pdf8908248http://repositorio.bc.ufg.br/tede/bitstreams/736c4967-512e-4df4-aead-0d553238fc87/downloaddc24f8654223621a222b00d575fe3735MD53tede/117332021-11-08 10:15:52.084http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11733http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-11-08T13:15:52Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar |
dc.title.alternative.eng.fl_str_mv |
PupRN: a method for ophthalmic abnormalities diagnosis in newborn based on pupillary dynamics |
title |
PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar |
spellingShingle |
PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar Silva, Marcos Vinicius Ribeiro Anormalidade oftalmológica Dinâmica pupilar Recém-nascido Sistema automatizado de pupilometria Diagnóstico Ophthalmological abnormality Pupil dynamics Newborn Automated pupillometry system Diagnosis CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar |
title_full |
PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar |
title_fullStr |
PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar |
title_full_unstemmed |
PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar |
title_sort |
PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar |
author |
Silva, Marcos Vinicius Ribeiro |
author_facet |
Silva, Marcos Vinicius Ribeiro |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Camilo Júnior, Celso Gonçalves |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6776569904919279 |
dc.contributor.referee1.fl_str_mv |
Camilo Júnior, Celso Gonçalves |
dc.contributor.referee2.fl_str_mv |
Naves, Eduardo Lázaro Martins |
dc.contributor.referee3.fl_str_mv |
Rosa, Thierson Couto |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/6930019751033452 |
dc.contributor.author.fl_str_mv |
Silva, Marcos Vinicius Ribeiro |
contributor_str_mv |
Camilo Júnior, Celso Gonçalves Camilo Júnior, Celso Gonçalves Naves, Eduardo Lázaro Martins Rosa, Thierson Couto |
dc.subject.por.fl_str_mv |
Anormalidade oftalmológica Dinâmica pupilar Recém-nascido Sistema automatizado de pupilometria Diagnóstico |
topic |
Anormalidade oftalmológica Dinâmica pupilar Recém-nascido Sistema automatizado de pupilometria Diagnóstico Ophthalmological abnormality Pupil dynamics Newborn Automated pupillometry system Diagnosis CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Ophthalmological abnormality Pupil dynamics Newborn Automated pupillometry system Diagnosis |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Vision is one of the human senses that help development since birth, being of paramount importance for cognitive, social, and motor skills. The World Health Organization (WHO) points out that the number of children with ophthalmic abnormalities should increase by about 200 million between 2000 and 2050. Dynamic pupillometry is an exam that captures immutable pupillary behavior, such as its change in involuntary size, aiming to diagnose eye disorders and diseases. Since these pathologies being severe in children and the potential of pupillometry analysis for their diagnosis, this work proposes a method for diagnosing ophthalmic abnormalities using machine learning techniques and intelligent algorithms. Thus, the method autonomously extracts pupillary information from pupillometry exams and applies a classifier model to distinguish newborns between normal and altered clinical conditions within the ophthalmological context. This model intends to be a trial screening method that could help health professionals diagnose newborns' ophthalmological abnormalities. In addition, an annotated benchmark, which was manually developed in this study, is available and presents the context and highlights the obstacles in working with pupillometry exams in newborns. The algorithms proposed by this work were evaluated and compared with the ElSe and ExCuSe algorithms, state-of-the-art algorithms in the subject of pupillary tracking applied to the scope of this study. In conclusion, it presented a classifier model capable of differentiating newborns with diseased diagnosis in the ophthalmic field with an accuracy close to 81% under the available dataset. |
publishDate |
2021 |
dc.date.accessioned.fl_str_mv |
2021-11-08T13:11:09Z |
dc.date.available.fl_str_mv |
2021-11-08T13:11:09Z |
dc.date.issued.fl_str_mv |
2021-07-29 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SILVA, M. V. R. PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar. 2021. 79 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/11733 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000007s63 |
identifier_str_mv |
SILVA, M. V. R. PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar. 2021. 79 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021. ark:/38995/0013000007s63 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/11733 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
20 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 |
dc.relation.department.fl_str_mv |
26 |
dc.relation.cnpq.fl_str_mv |
184 |
dc.relation.sponsorship.fl_str_mv |
1 |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivatives 4.0 International http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/20b44b69-2126-469d-8c37-f9920dcf4b0f/download http://repositorio.bc.ufg.br/tede/bitstreams/48ae2638-3dfb-40fb-97ed-2f85ecda0556/download http://repositorio.bc.ufg.br/tede/bitstreams/736c4967-512e-4df4-aead-0d553238fc87/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 4460e5956bc1d1639be9ae6146a50347 dc24f8654223621a222b00d575fe3735 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172592647012352 |