PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar

Detalhes bibliográficos
Autor(a) principal: Silva, Marcos Vinicius Ribeiro
Data de Publicação: 2021
Tipo de documento: Dissertação
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000007s63
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/11733
Resumo: Vision is one of the human senses that help development since birth, being of paramount importance for cognitive, social, and motor skills. The World Health Organization (WHO) points out that the number of children with ophthalmic abnormalities should increase by about 200 million between 2000 and 2050. Dynamic pupillometry is an exam that captures immutable pupillary behavior, such as its change in involuntary size, aiming to diagnose eye disorders and diseases. Since these pathologies being severe in children and the potential of pupillometry analysis for their diagnosis, this work proposes a method for diagnosing ophthalmic abnormalities using machine learning techniques and intelligent algorithms. Thus, the method autonomously extracts pupillary information from pupillometry exams and applies a classifier model to distinguish newborns between normal and altered clinical conditions within the ophthalmological context. This model intends to be a trial screening method that could help health professionals diagnose newborns' ophthalmological abnormalities. In addition, an annotated benchmark, which was manually developed in this study, is available and presents the context and highlights the obstacles in working with pupillometry exams in newborns. The algorithms proposed by this work were evaluated and compared with the ElSe and ExCuSe algorithms, state-of-the-art algorithms in the subject of pupillary tracking applied to the scope of this study. In conclusion, it presented a classifier model capable of differentiating newborns with diseased diagnosis in the ophthalmic field with an accuracy close to 81% under the available dataset.
id UFG-2_d0c45429d3de2c9fc2511124f2b4ea48
oai_identifier_str oai:repositorio.bc.ufg.br:tede/11733
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Camilo Júnior, Celso Gonçalveshttp://lattes.cnpq.br/6776569904919279Camilo Júnior, Celso GonçalvesNaves, Eduardo Lázaro MartinsRosa, Thierson Coutohttp://lattes.cnpq.br/6930019751033452Silva, Marcos Vinicius Ribeiro2021-11-08T13:11:09Z2021-11-08T13:11:09Z2021-07-29SILVA, M. V. R. PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar. 2021. 79 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021.http://repositorio.bc.ufg.br/tede/handle/tede/11733ark:/38995/0013000007s63Vision is one of the human senses that help development since birth, being of paramount importance for cognitive, social, and motor skills. The World Health Organization (WHO) points out that the number of children with ophthalmic abnormalities should increase by about 200 million between 2000 and 2050. Dynamic pupillometry is an exam that captures immutable pupillary behavior, such as its change in involuntary size, aiming to diagnose eye disorders and diseases. Since these pathologies being severe in children and the potential of pupillometry analysis for their diagnosis, this work proposes a method for diagnosing ophthalmic abnormalities using machine learning techniques and intelligent algorithms. Thus, the method autonomously extracts pupillary information from pupillometry exams and applies a classifier model to distinguish newborns between normal and altered clinical conditions within the ophthalmological context. This model intends to be a trial screening method that could help health professionals diagnose newborns' ophthalmological abnormalities. In addition, an annotated benchmark, which was manually developed in this study, is available and presents the context and highlights the obstacles in working with pupillometry exams in newborns. The algorithms proposed by this work were evaluated and compared with the ElSe and ExCuSe algorithms, state-of-the-art algorithms in the subject of pupillary tracking applied to the scope of this study. In conclusion, it presented a classifier model capable of differentiating newborns with diseased diagnosis in the ophthalmic field with an accuracy close to 81% under the available dataset.A visão é um dos sentidos que auxilia no desenvolvimento do ser humano desde seu nascimento, sendo de suma importância para as habilidades cognitivas, sociais e motoras. A Organização Mundial da Saúde (OMS) aponta que o número de crianças com anormalidades oftalmológicas deve aumentar em cerca de 200 milhões entre os anos de 2000 e 2050. A pupilometria dinâmica é um exame que captura informações do comportamento pupilar imutável, como sua alteração de tamanho de forma involuntária, visando diagnosticar anormalidades neurais e oftalmológicas. Considerando a gravidade dessas patologias em crianças e o potencial da análise da pupilometria para o diagnóstico das mesmas, este trabalho propõe um método de diagnóstico de anormalidades oftalmológicas em recém-nascidos baseado em dados da dinâmica pupilar e algoritmos de inteligência artificial. Assim, o método extrai as informações pupilares dos exames de pupilometria de forma autônoma e aplica um modelo classificador capaz de distinguir recém-nascidos entre os quadros clínicos normais e alterados dentro do contexto oftalmológico. Em complemento, também é disponibilizado um benchmark anotado manualmente, desenvolvido neste estudo, e que apresenta o contexto e realça os obstáculos em se trabalhar com exames de pupilometria de recém-nascidos. Os algoritmos propostos por este trabalho foram avaliados e comparados com os algoritmos ElSe e ExCuSe, algoritmos estado da arte no assunto de rastreamento pupilar aplicados a esfera deste estudo. Em conclusão, um modelo classificador capaz de diferenciar recém-nascidos com diagnóstico anormal no campo oftalmológico com precisão próxima de 81% sob o conjunto de dados disponível foi apresentado.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2021-11-05T11:36:00Z No. of bitstreams: 2 Dissertação - Marcos Vinicius Ribeiro Silva - 2021.pdf: 8908248 bytes, checksum: dc24f8654223621a222b00d575fe3735 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2021-11-08T13:11:08Z (GMT) No. of bitstreams: 2 Dissertação - Marcos Vinicius Ribeiro Silva - 2021.pdf: 8908248 bytes, checksum: dc24f8654223621a222b00d575fe3735 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5)Made available in DSpace on 2021-11-08T13:11:09Z (GMT). No. of bitstreams: 2 Dissertação - Marcos Vinicius Ribeiro Silva - 2021.pdf: 8908248 bytes, checksum: dc24f8654223621a222b00d575fe3735 (MD5) license_rdf: 805 bytes, checksum: 4460e5956bc1d1639be9ae6146a50347 (MD5) Previous issue date: 2021-07-29Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)Attribution-NonCommercial-NoDerivatives 4.0 Internationalhttp://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessAnormalidade oftalmológicaDinâmica pupilarRecém-nascidoSistema automatizado de pupilometriaDiagnósticoOphthalmological abnormalityPupil dynamicsNewbornAutomated pupillometry systemDiagnosisCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOPupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilarPupRN: a method for ophthalmic abnormalities diagnosis in newborn based on pupillary dynamicsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis20500500500500261841reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/20b44b69-2126-469d-8c37-f9920dcf4b0f/download8a4605be74aa9ea9d79846c1fba20a33MD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8805http://repositorio.bc.ufg.br/tede/bitstreams/48ae2638-3dfb-40fb-97ed-2f85ecda0556/download4460e5956bc1d1639be9ae6146a50347MD52ORIGINALDissertação - Marcos Vinicius Ribeiro Silva - 2021.pdfDissertação - Marcos Vinicius Ribeiro Silva - 2021.pdfapplication/pdf8908248http://repositorio.bc.ufg.br/tede/bitstreams/736c4967-512e-4df4-aead-0d553238fc87/downloaddc24f8654223621a222b00d575fe3735MD53tede/117332021-11-08 10:15:52.084http://creativecommons.org/licenses/by-nc-nd/4.0/Attribution-NonCommercial-NoDerivatives 4.0 Internationalopen.accessoai:repositorio.bc.ufg.br:tede/11733http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2021-11-08T13:15:52Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=
dc.title.pt_BR.fl_str_mv PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar
dc.title.alternative.eng.fl_str_mv PupRN: a method for ophthalmic abnormalities diagnosis in newborn based on pupillary dynamics
title PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar
spellingShingle PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar
Silva, Marcos Vinicius Ribeiro
Anormalidade oftalmológica
Dinâmica pupilar
Recém-nascido
Sistema automatizado de pupilometria
Diagnóstico
Ophthalmological abnormality
Pupil dynamics
Newborn
Automated pupillometry system
Diagnosis
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar
title_full PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar
title_fullStr PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar
title_full_unstemmed PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar
title_sort PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar
author Silva, Marcos Vinicius Ribeiro
author_facet Silva, Marcos Vinicius Ribeiro
author_role author
dc.contributor.advisor1.fl_str_mv Camilo Júnior, Celso Gonçalves
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/6776569904919279
dc.contributor.referee1.fl_str_mv Camilo Júnior, Celso Gonçalves
dc.contributor.referee2.fl_str_mv Naves, Eduardo Lázaro Martins
dc.contributor.referee3.fl_str_mv Rosa, Thierson Couto
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/6930019751033452
dc.contributor.author.fl_str_mv Silva, Marcos Vinicius Ribeiro
contributor_str_mv Camilo Júnior, Celso Gonçalves
Camilo Júnior, Celso Gonçalves
Naves, Eduardo Lázaro Martins
Rosa, Thierson Couto
dc.subject.por.fl_str_mv Anormalidade oftalmológica
Dinâmica pupilar
Recém-nascido
Sistema automatizado de pupilometria
Diagnóstico
topic Anormalidade oftalmológica
Dinâmica pupilar
Recém-nascido
Sistema automatizado de pupilometria
Diagnóstico
Ophthalmological abnormality
Pupil dynamics
Newborn
Automated pupillometry system
Diagnosis
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Ophthalmological abnormality
Pupil dynamics
Newborn
Automated pupillometry system
Diagnosis
dc.subject.cnpq.fl_str_mv CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Vision is one of the human senses that help development since birth, being of paramount importance for cognitive, social, and motor skills. The World Health Organization (WHO) points out that the number of children with ophthalmic abnormalities should increase by about 200 million between 2000 and 2050. Dynamic pupillometry is an exam that captures immutable pupillary behavior, such as its change in involuntary size, aiming to diagnose eye disorders and diseases. Since these pathologies being severe in children and the potential of pupillometry analysis for their diagnosis, this work proposes a method for diagnosing ophthalmic abnormalities using machine learning techniques and intelligent algorithms. Thus, the method autonomously extracts pupillary information from pupillometry exams and applies a classifier model to distinguish newborns between normal and altered clinical conditions within the ophthalmological context. This model intends to be a trial screening method that could help health professionals diagnose newborns' ophthalmological abnormalities. In addition, an annotated benchmark, which was manually developed in this study, is available and presents the context and highlights the obstacles in working with pupillometry exams in newborns. The algorithms proposed by this work were evaluated and compared with the ElSe and ExCuSe algorithms, state-of-the-art algorithms in the subject of pupillary tracking applied to the scope of this study. In conclusion, it presented a classifier model capable of differentiating newborns with diseased diagnosis in the ophthalmic field with an accuracy close to 81% under the available dataset.
publishDate 2021
dc.date.accessioned.fl_str_mv 2021-11-08T13:11:09Z
dc.date.available.fl_str_mv 2021-11-08T13:11:09Z
dc.date.issued.fl_str_mv 2021-07-29
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv SILVA, M. V. R. PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar. 2021. 79 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/11733
dc.identifier.dark.fl_str_mv ark:/38995/0013000007s63
identifier_str_mv SILVA, M. V. R. PupRN: um método para diagnóstico de anormalidades oftalmológicas em recém-nascido baseado na dinâmica pupilar. 2021. 79 f. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2021.
ark:/38995/0013000007s63
url http://repositorio.bc.ufg.br/tede/handle/tede/11733
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 20
dc.relation.confidence.fl_str_mv 500
500
500
500
dc.relation.department.fl_str_mv 26
dc.relation.cnpq.fl_str_mv 184
dc.relation.sponsorship.fl_str_mv 1
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/20b44b69-2126-469d-8c37-f9920dcf4b0f/download
http://repositorio.bc.ufg.br/tede/bitstreams/48ae2638-3dfb-40fb-97ed-2f85ecda0556/download
http://repositorio.bc.ufg.br/tede/bitstreams/736c4967-512e-4df4-aead-0d553238fc87/download
bitstream.checksum.fl_str_mv 8a4605be74aa9ea9d79846c1fba20a33
4460e5956bc1d1639be9ae6146a50347
dc24f8654223621a222b00d575fe3735
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172592647012352