Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada
Autor(a) principal: | |
---|---|
Data de Publicação: | 2018 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000003vzq |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/8329 |
Resumo: | Let $ k \geq 2.$ an integer. The recurrence $ \fk{n} = \sum_ {i = 0}^k \fk{n-i} $ for $ n> k $, with initial conditions $F_{-(k-2)}^{(k)}=F_{-(k-3)}^{(k)}=\cdots=F_{0}^{(k)}=0$ and $F_1^{ (k)} = 1$, which is called the $k$-generalized Fibonacci sequence. When $ k = 2 ,$ we have the Fibonacci sequence $ \{ F_n \}_{n\geq 0}.$ We will show that the equation $F_{n}^{x}+F_{n+1}^x=F_{m}$ does not have no non-trivial integer solutions $ (n, m, x) $ to $ x> 2 $. On the other hand, for $ k \geq 3,$ we will show that the diophantine equation $\epi$ does not have integer solutions $ (n, m, k, x) $ with $ x \geq 2 $. In both cases, we will use initially Matveev's Theorem, for linear forms in logarithms and the reduction method due to Dujella and Pethö, to limit the variables $ n, \; m $ and $ x $ at intervals where the problem is computable. In addition, in the case for $ k\geq 3 $, we will use the fact that the dominant root the $k$-generalized Fibonacci sequence is exponentially close to 2 to bound $k$, a method developed by Bravo and Luca. |
id |
UFG-2_dcab694ff5bda90c47ea6e606497f7e5 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/8329 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Chaves, Ana Paula de Araújohttp://lattes.cnpq.br/2332073500640724Chaves, Ana Paula de AraújoMartinez, Fabio Enrique BrocheroOliveira, Ricardo Nuneshttp://lattes.cnpq.br/4323303374228855Rico Acevedo, Carlos Alirio2018-04-12T11:29:32Z2018-03-16RICO ACEVEDO, C. A. Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada. 2018. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018.http://repositorio.bc.ufg.br/tede/handle/tede/8329ark:/38995/0013000003vzqLet $ k \geq 2.$ an integer. The recurrence $ \fk{n} = \sum_ {i = 0}^k \fk{n-i} $ for $ n> k $, with initial conditions $F_{-(k-2)}^{(k)}=F_{-(k-3)}^{(k)}=\cdots=F_{0}^{(k)}=0$ and $F_1^{ (k)} = 1$, which is called the $k$-generalized Fibonacci sequence. When $ k = 2 ,$ we have the Fibonacci sequence $ \{ F_n \}_{n\geq 0}.$ We will show that the equation $F_{n}^{x}+F_{n+1}^x=F_{m}$ does not have no non-trivial integer solutions $ (n, m, x) $ to $ x> 2 $. On the other hand, for $ k \geq 3,$ we will show that the diophantine equation $\epi$ does not have integer solutions $ (n, m, k, x) $ with $ x \geq 2 $. In both cases, we will use initially Matveev's Theorem, for linear forms in logarithms and the reduction method due to Dujella and Pethö, to limit the variables $ n, \; m $ and $ x $ at intervals where the problem is computable. In addition, in the case for $ k\geq 3 $, we will use the fact that the dominant root the $k$-generalized Fibonacci sequence is exponentially close to 2 to bound $k$, a method developed by Bravo and Luca.Seja $k\geq 2$ inteiro, considere-se a recorrência $\fk{n}=\sum_{i=0}^{k}\fk{n-i}$ para $n>k$, com condições iniciais $F_{-(k-2)}^{(k)}=F_{-(k-3)}^{(k)}=\cdots=F_{0}^{(k)}=0$ e $F_{1}^{(k)}=1$, que é a sequência de Fibonacci $k$-generalizada. No caso quando $k=2$, é dizer, para a sequência de Fibonacci $\{F_n\}_{n\geq 0}$, vai-se mostrar que a equação $F_{n}^{x}+F_{n+1}^x=F_{m}$ não possui soluções inteiras não triviais $(n,m,x)$ para $x>2$. Por outro lado para, $k\geq 3$ se mostrar que a equação diofantina $\epi$ não possui soluções inteiras $(n,m,k,x)$ com $x\geq 2$. Em ambos casos, inicialmente são usados resultados como o Teorema de Matveev, para formas lineares em logaritmos e o método de redução de Dujella e Pethö, para limitar as variáveis $n, \; m$ e $x$ em intervalos onde o problema seja computável. Adicionalmente, no caso para $k\geq 3$ é usado que a raiz dominante da sequência de Fibonacci $k$-generalizada e exponencialmente próxima a 2, para limitar $k$, o que é um método desenvolvido por Bravo e Luca.Submitted by Liliane Ferreira (ljuvencia30@gmail.com) on 2018-04-11T12:39:47Z No. of bitstreams: 2 Dissertação - Carlos Alirio Rico Acevedo - 2018.pdf: 1289579 bytes, checksum: 0b60c803c3d9f6f61772e58e7d624086 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2018-04-12T11:29:32Z (GMT) No. of bitstreams: 2 Dissertação - Carlos Alirio Rico Acevedo - 2018.pdf: 1289579 bytes, checksum: 0b60c803c3d9f6f61772e58e7d624086 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2018-04-12T11:29:32Z (GMT). No. of bitstreams: 2 Dissertação - Carlos Alirio Rico Acevedo - 2018.pdf: 1289579 bytes, checksum: 0b60c803c3d9f6f61772e58e7d624086 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2018-03-16Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessEquações diofantinasSequência de fibonacci k-generalizadaFormas lineares em logaritmosMetodos de reduçãoDiphantine equationK-generalized fibonacci sequenceLinear form in logarithmReduction methodALGEBRA::TEORIA DOS NUMEROSSobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizadaOn the sum of power of two consecutive k-generalized Fibonacci numbersinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis6600717948137941247600600600600-426877751233515201534604027333422-2555911436985713659reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/826dd867-4f7a-40c9-a031-8715fe822a76/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/7d26fabb-2caa-4c17-b06d-85e42fac6dad/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/62c8a0e6-6b71-4f2c-98ff-f63df0a74fd4/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/384b8120-c22e-48fc-b7a1-d4de12b6cf70/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALDissertação - Carlos Alirio Rico Acevedo - 2018.pdfDissertação - Carlos Alirio Rico Acevedo - 2018.pdfapplication/pdf1289579http://repositorio.bc.ufg.br/tede/bitstreams/83fe866d-6876-46e3-a6b9-bf3b5eee8831/download0b60c803c3d9f6f61772e58e7d624086MD55tede/83292018-04-12 08:29:32.237http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8329http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2018-04-12T11:29:32Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada |
dc.title.alternative.eng.fl_str_mv |
On the sum of power of two consecutive k-generalized Fibonacci numbers |
title |
Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada |
spellingShingle |
Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada Rico Acevedo, Carlos Alirio Equações diofantinas Sequência de fibonacci k-generalizada Formas lineares em logaritmos Metodos de redução Diphantine equation K-generalized fibonacci sequence Linear form in logarithm Reduction method ALGEBRA::TEORIA DOS NUMEROS |
title_short |
Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada |
title_full |
Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada |
title_fullStr |
Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada |
title_full_unstemmed |
Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada |
title_sort |
Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada |
author |
Rico Acevedo, Carlos Alirio |
author_facet |
Rico Acevedo, Carlos Alirio |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Chaves, Ana Paula de Araújo |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/2332073500640724 |
dc.contributor.referee1.fl_str_mv |
Chaves, Ana Paula de Araújo |
dc.contributor.referee2.fl_str_mv |
Martinez, Fabio Enrique Brochero |
dc.contributor.referee3.fl_str_mv |
Oliveira, Ricardo Nunes |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4323303374228855 |
dc.contributor.author.fl_str_mv |
Rico Acevedo, Carlos Alirio |
contributor_str_mv |
Chaves, Ana Paula de Araújo Chaves, Ana Paula de Araújo Martinez, Fabio Enrique Brochero Oliveira, Ricardo Nunes |
dc.subject.por.fl_str_mv |
Equações diofantinas Sequência de fibonacci k-generalizada Formas lineares em logaritmos Metodos de redução |
topic |
Equações diofantinas Sequência de fibonacci k-generalizada Formas lineares em logaritmos Metodos de redução Diphantine equation K-generalized fibonacci sequence Linear form in logarithm Reduction method ALGEBRA::TEORIA DOS NUMEROS |
dc.subject.eng.fl_str_mv |
Diphantine equation K-generalized fibonacci sequence Linear form in logarithm Reduction method |
dc.subject.cnpq.fl_str_mv |
ALGEBRA::TEORIA DOS NUMEROS |
description |
Let $ k \geq 2.$ an integer. The recurrence $ \fk{n} = \sum_ {i = 0}^k \fk{n-i} $ for $ n> k $, with initial conditions $F_{-(k-2)}^{(k)}=F_{-(k-3)}^{(k)}=\cdots=F_{0}^{(k)}=0$ and $F_1^{ (k)} = 1$, which is called the $k$-generalized Fibonacci sequence. When $ k = 2 ,$ we have the Fibonacci sequence $ \{ F_n \}_{n\geq 0}.$ We will show that the equation $F_{n}^{x}+F_{n+1}^x=F_{m}$ does not have no non-trivial integer solutions $ (n, m, x) $ to $ x> 2 $. On the other hand, for $ k \geq 3,$ we will show that the diophantine equation $\epi$ does not have integer solutions $ (n, m, k, x) $ with $ x \geq 2 $. In both cases, we will use initially Matveev's Theorem, for linear forms in logarithms and the reduction method due to Dujella and Pethö, to limit the variables $ n, \; m $ and $ x $ at intervals where the problem is computable. In addition, in the case for $ k\geq 3 $, we will use the fact that the dominant root the $k$-generalized Fibonacci sequence is exponentially close to 2 to bound $k$, a method developed by Bravo and Luca. |
publishDate |
2018 |
dc.date.accessioned.fl_str_mv |
2018-04-12T11:29:32Z |
dc.date.issued.fl_str_mv |
2018-03-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
RICO ACEVEDO, C. A. Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada. 2018. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/8329 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000003vzq |
identifier_str_mv |
RICO ACEVEDO, C. A. Sobre somas de potências de termos consecutivos na sequência de Fibonacci k-generalizada. 2018. 59 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Goiás, Goiânia, 2018. ark:/38995/0013000003vzq |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/8329 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
34604027333422 |
dc.relation.sponsorship.fl_str_mv |
-2555911436985713659 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/826dd867-4f7a-40c9-a031-8715fe822a76/download http://repositorio.bc.ufg.br/tede/bitstreams/7d26fabb-2caa-4c17-b06d-85e42fac6dad/download http://repositorio.bc.ufg.br/tede/bitstreams/62c8a0e6-6b71-4f2c-98ff-f63df0a74fd4/download http://repositorio.bc.ufg.br/tede/bitstreams/384b8120-c22e-48fc-b7a1-d4de12b6cf70/download http://repositorio.bc.ufg.br/tede/bitstreams/83fe866d-6876-46e3-a6b9-bf3b5eee8831/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 0b60c803c3d9f6f61772e58e7d624086 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172550287687680 |