Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana”
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000008xbg |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/12236 |
Resumo: | The study of nonlinear dynamics represents a challenge of contemporary physics. In particular, the investigation of Bose Einstein condensates proved to be a hard task due to the large number of interacting particles. Therefore, given the difficulty of modeling these systems, approximations were introduced, which promoted the description of the Bose-Einstein condensation state in interacting atomic gases as a three-dimensional nonlinear Schrödinger equation, known as the Gross-Pitaevskii equation. In this work we review the dimensional reduction method, which use a variational treatment with the goal of derive effective one-dimensional (1D) and two-dimensional (2D) equations in cigar-shaped and pancake-shaped Bose-Einstein condensates, where we show that these equations describe almost exactly the dynamics of their respective models. Thus, we studied the ground-state solutions in tube-shaped and flat washer-shaped Bose-Einstein condensates by means of effectives non-polynomials equations, derived from the dimensional reduction method. The results produced by this equations were in very good agreement with those obtained from the corresponding full 3D Gross-Pitaevskii equation. |
id |
UFG-2_dcb7855790a05dd08a9ed9acd7666ca1 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/12236 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Cardoso, Wesley Buenohttp://lattes.cnpq.br/6845416823133684Cardoso, Wesley BuenoAvelar, Ardiley TorresSantana, Ademir Eugênio deSantos, Mateus Calixto Pereira dos2022-08-05T13:01:48Z2022-08-05T13:01:48Z2019-02-28SANTOS, Mateus C. P. Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana”. 2019. 54 f. Dissertação (Mestrado em Física) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/12236ark:/38995/0013000008xbgThe study of nonlinear dynamics represents a challenge of contemporary physics. In particular, the investigation of Bose Einstein condensates proved to be a hard task due to the large number of interacting particles. Therefore, given the difficulty of modeling these systems, approximations were introduced, which promoted the description of the Bose-Einstein condensation state in interacting atomic gases as a three-dimensional nonlinear Schrödinger equation, known as the Gross-Pitaevskii equation. In this work we review the dimensional reduction method, which use a variational treatment with the goal of derive effective one-dimensional (1D) and two-dimensional (2D) equations in cigar-shaped and pancake-shaped Bose-Einstein condensates, where we show that these equations describe almost exactly the dynamics of their respective models. Thus, we studied the ground-state solutions in tube-shaped and flat washer-shaped Bose-Einstein condensates by means of effectives non-polynomials equations, derived from the dimensional reduction method. The results produced by this equations were in very good agreement with those obtained from the corresponding full 3D Gross-Pitaevskii equation.O estudo da dinâmica não linear representa um considerável desafio da física contemporânea. Em particular, a investigação dos condensados de Bose-Einstein se mostrouuma tarefa laboriosa devido ao grande número partículas interagentes. Portanto, visto a dificuldade de modelar esses sistemas, foram introduzidas aproximações, o que promoveu a descrição do estado de condensação de Bose-Einstein em gases atômicos interagentes como uma equação de Schrödinger não linear tridimensional, conhecida por equação de Gross-Pitaevskii. Neste trabalho fazemos uma revisão a respeito da utilização de um métodode redução dimensional com o tratamento variacional a fim de derivar equações efetivas unidimensionais (1D) e bidimensionais (2D) para condensados de Bose-Einstein em forma de “charuto” e “panqueca”, onde mostramos que estas equações descrevem de maneira bastente precisa a dinâmica de seus respectivos modelos. Posteriormente, estudamos as soluções de estado fundamental dos condensados de Bose-Einstein em forma de “tubo” e “anilha plana”, através das equações efetivas não polinomiais 1D e 2D, respectivamente, derivadas a partir do método de redução dimensional. Os resultados produzidos por estas equações foram concordantes com aqueles obtidos a partir da equação de Gross-Pitaevskii em 3D de cada um dos modelos.Submitted by Marlene Santos (marlene.bc.ufg@gmail.com) on 2022-08-04T17:20:00Z No. of bitstreams: 1 Dissertação - Mateus Calixto Pereira dos Santos - 2019.pdf: 6820672 bytes, checksum: 1df7a9d91e698cd03fd0c38605c96839 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2022-08-05T13:01:48Z (GMT) No. of bitstreams: 1 Dissertação - Mateus Calixto Pereira dos Santos - 2019.pdf: 6820672 bytes, checksum: 1df7a9d91e698cd03fd0c38605c96839 (MD5)Made available in DSpace on 2022-08-05T13:01:48Z (GMT). No. of bitstreams: 1 Dissertação - Mateus Calixto Pereira dos Santos - 2019.pdf: 6820672 bytes, checksum: 1df7a9d91e698cd03fd0c38605c96839 (MD5) Previous issue date: 2019-02-28Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqporUniversidade Federal de GoiásPrograma de Pós-graduação em Fisica (IF)UFGBrasilInstituto de Física - IF (RG)Condensado de Bose-EinsteinEquação de Gross-PitaevskiiRedução dimensionalBose–Einstein condensateGross–Pitaevskii equationDimensional reductionCIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERALRedução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana”Dimensional reduction for tube-shaped and flat-washer-shaped Bose-Einstein condensatesinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesis57500500500500255830reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGinfo:eu-repo/semantics/openAccessLICENSElicense.txtlicense.txttext/plain; charset=utf-81748http://repositorio.bc.ufg.br/tede/bitstreams/0fb690d8-67c9-4931-97ab-1c2fbd507f18/download8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALDissertação - Mateus Calixto Pereira dos Santos - 2019.pdfDissertação - Mateus Calixto Pereira dos Santos - 2019.pdfapplication/pdf6820672http://repositorio.bc.ufg.br/tede/bitstreams/20ed9655-f498-4cf9-a8c1-3f85b47f2f38/download1df7a9d91e698cd03fd0c38605c96839MD52tede/122362022-08-05 10:01:48.658open.accessoai:repositorio.bc.ufg.br:tede/12236http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2022-08-05T13:01:48Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo= |
dc.title.pt_BR.fl_str_mv |
Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana” |
dc.title.alternative.eng.fl_str_mv |
Dimensional reduction for tube-shaped and flat-washer-shaped Bose-Einstein condensates |
title |
Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana” |
spellingShingle |
Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana” Santos, Mateus Calixto Pereira dos Condensado de Bose-Einstein Equação de Gross-Pitaevskii Redução dimensional Bose–Einstein condensate Gross–Pitaevskii equation Dimensional reduction CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL |
title_short |
Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana” |
title_full |
Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana” |
title_fullStr |
Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana” |
title_full_unstemmed |
Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana” |
title_sort |
Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana” |
author |
Santos, Mateus Calixto Pereira dos |
author_facet |
Santos, Mateus Calixto Pereira dos |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Cardoso, Wesley Bueno |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/6845416823133684 |
dc.contributor.referee1.fl_str_mv |
Cardoso, Wesley Bueno |
dc.contributor.referee2.fl_str_mv |
Avelar, Ardiley Torres |
dc.contributor.referee3.fl_str_mv |
Santana, Ademir Eugênio de |
dc.contributor.author.fl_str_mv |
Santos, Mateus Calixto Pereira dos |
contributor_str_mv |
Cardoso, Wesley Bueno Cardoso, Wesley Bueno Avelar, Ardiley Torres Santana, Ademir Eugênio de |
dc.subject.por.fl_str_mv |
Condensado de Bose-Einstein Equação de Gross-Pitaevskii Redução dimensional |
topic |
Condensado de Bose-Einstein Equação de Gross-Pitaevskii Redução dimensional Bose–Einstein condensate Gross–Pitaevskii equation Dimensional reduction CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL |
dc.subject.eng.fl_str_mv |
Bose–Einstein condensate Gross–Pitaevskii equation Dimensional reduction |
dc.subject.cnpq.fl_str_mv |
CIENCIAS EXATAS E DA TERRA::FISICA::FISICA GERAL |
description |
The study of nonlinear dynamics represents a challenge of contemporary physics. In particular, the investigation of Bose Einstein condensates proved to be a hard task due to the large number of interacting particles. Therefore, given the difficulty of modeling these systems, approximations were introduced, which promoted the description of the Bose-Einstein condensation state in interacting atomic gases as a three-dimensional nonlinear Schrödinger equation, known as the Gross-Pitaevskii equation. In this work we review the dimensional reduction method, which use a variational treatment with the goal of derive effective one-dimensional (1D) and two-dimensional (2D) equations in cigar-shaped and pancake-shaped Bose-Einstein condensates, where we show that these equations describe almost exactly the dynamics of their respective models. Thus, we studied the ground-state solutions in tube-shaped and flat washer-shaped Bose-Einstein condensates by means of effectives non-polynomials equations, derived from the dimensional reduction method. The results produced by this equations were in very good agreement with those obtained from the corresponding full 3D Gross-Pitaevskii equation. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-02-28 |
dc.date.accessioned.fl_str_mv |
2022-08-05T13:01:48Z |
dc.date.available.fl_str_mv |
2022-08-05T13:01:48Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
SANTOS, Mateus C. P. Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana”. 2019. 54 f. Dissertação (Mestrado em Física) - Universidade Federal de Goiás, Goiânia, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/12236 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000008xbg |
identifier_str_mv |
SANTOS, Mateus C. P. Redução dimensional para condensados de Bose-Einstein em forma de “tubo” e “anilha plana”. 2019. 54 f. Dissertação (Mestrado em Física) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/0013000008xbg |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/12236 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
57 |
dc.relation.confidence.fl_str_mv |
500 500 500 500 |
dc.relation.department.fl_str_mv |
25 |
dc.relation.cnpq.fl_str_mv |
583 |
dc.relation.sponsorship.fl_str_mv |
0 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Fisica (IF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Física - IF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/0fb690d8-67c9-4931-97ab-1c2fbd507f18/download http://repositorio.bc.ufg.br/tede/bitstreams/20ed9655-f498-4cf9-a8c1-3f85b47f2f38/download |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 1df7a9d91e698cd03fd0c38605c96839 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172605478436864 |