Bifurcações de campos vetoriais em duas zonas com simetria
Autor(a) principal: | |
---|---|
Data de Publicação: | 2017 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/001300000f27q |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/8083 |
Resumo: | In this work we study reversible vector fields in two zones and equivariant vector fields in two zones. Our main result is the classification of the symmetric singularities of codimensions 0,1 and 2 of such vector fields. More precisely, in the reversible case in R3, where the dimension of the fixed points variety of the involution associated to the vector field is 2, we present all bifurcation diagram of the codimensions 1 and 2 singularities, describing the changes in the behavior of the symmetric singularities and tangents of the vector field with the transition manifold, S, according to the variation of the bifucartion parameter. We also show the existence of invariant cylinders and, in this case, doing small perturbations we determine invariant manifolds that persisted and we determine the number of limit cycles that were born. When the vector field defined on two zones is equivariant, the dynamic is enriched with the emergence of the sliding vector field and we also do a local study and the classification of singularities (and pseudo-singularities) of codimensions 0,1 and 2. We show the existence of homoclinic sliding orbit and that it is a codimension one phenomenon. Moreover, provided the symmetry we get a double Shilnikov sliding orbit. |
id |
UFG-2_de8b2c79179bff319424ee54dcb20c4f |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/8083 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Medrado, João Carlos da Rochahttp://lattes.cnpq.br/5021927574622286Tonon, Durval JoséPessoa, Cláudio GomesMartins, Ricardo MirandaOliveira, Regilene Delazari dos Santoshttp://lattes.cnpq.br/4957848617208610Castro, Ubirajara José Gama de2017-12-28T09:43:26Z2017-11-28CASTRO, Ubirajara José Gama de. Bifurcações de campos vetoriais em duas zonas com simetria. 2017. 119 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/8083ark:/38995/001300000f27qIn this work we study reversible vector fields in two zones and equivariant vector fields in two zones. Our main result is the classification of the symmetric singularities of codimensions 0,1 and 2 of such vector fields. More precisely, in the reversible case in R3, where the dimension of the fixed points variety of the involution associated to the vector field is 2, we present all bifurcation diagram of the codimensions 1 and 2 singularities, describing the changes in the behavior of the symmetric singularities and tangents of the vector field with the transition manifold, S, according to the variation of the bifucartion parameter. We also show the existence of invariant cylinders and, in this case, doing small perturbations we determine invariant manifolds that persisted and we determine the number of limit cycles that were born. When the vector field defined on two zones is equivariant, the dynamic is enriched with the emergence of the sliding vector field and we also do a local study and the classification of singularities (and pseudo-singularities) of codimensions 0,1 and 2. We show the existence of homoclinic sliding orbit and that it is a codimension one phenomenon. Moreover, provided the symmetry we get a double Shilnikov sliding orbit.Neste trabalho, estudamos campos vetoriais em duas zonas reversíveis e campos vetoriais em duas zonas equivariantes. Nosso resultado principal é a classificação das singularidades simétricas de codimensões 0, 1 e 2 de tais campos vetoriais. Mais precisamente, no caso reversível em R3, onde a dimensão da variedade de pontos fixos da involução associada ao campo vetorial é 2, apresentamos todos os diagramas de bifurcação das singularidades de codimensão 1 e 2, descrevendo as mudanças no comportamento das singularidades simétricas e das tangências do campo vetorial com a variedade de transição S, de acordo com a variação do parâmetro de bifurcação. Mostramos também a existência de cilindros invariantes e, nesse caso, fazendo pequenas perturbações determinamos variedades invariantes que persistiram e determinamos o número de ciclos limites que surgiram. Quando o campo vetorial definido em duas zonas é equivariante, a dinâmica é enriquecida com o surgimento do campo vetorial deslizante e também fazemos um estudo local e a classificação das singularidades (e pseudossingularidades) de codimensões 0, 1 e 2. Mostramos a existência de órbitas homoclínicas deslizantes e que esse é um fenômeno de codimensão 1 e devido à simetria do campo vetorial equivariante, teremos um duplo Shilnikov deslizante.Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2017-12-27T14:12:36Z No. of bitstreams: 2 Tese - Ubirajara José Gama de Castro - 2017.pdf: 14188106 bytes, checksum: 942882692cd259cae5e8d267f6ac1188 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-12-28T09:43:26Z (GMT) No. of bitstreams: 2 Tese - Ubirajara José Gama de Castro - 2017.pdf: 14188106 bytes, checksum: 942882692cd259cae5e8d267f6ac1188 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-12-28T09:43:26Z (GMT). No. of bitstreams: 2 Tese - Ubirajara José Gama de Castro - 2017.pdf: 14188106 bytes, checksum: 942882692cd259cae5e8d267f6ac1188 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-11-28Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessCampos vetoriais em duas zonasCampos vetoriais reversíveisCampos vetoriais equivariantesShilnikovTwo-zones vector fieldsReversible vector fieldsEquivariant vector fieldGEOMETRIA E TOPOLOGIA::SISTEMAS DINAMICOSBifurcações de campos vetoriais em duas zonas com simetriaBifurcations of vector fields in two zones with symmetryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-426877751233515201518583870815096459092075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/5dd1643a-7b40-4d55-8f6f-7ad4c13fe59f/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/5981d088-152e-42f6-bda3-ddb8d8e06a9e/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/7089beb9-0985-4a82-bea5-c79387113871/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/2e99c064-320f-44e4-a53d-15a6d7165497/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Ubirajara José Gama de Castro - 2017.pdfTese - Ubirajara José Gama de Castro - 2017.pdfapplication/pdf14188106http://repositorio.bc.ufg.br/tede/bitstreams/759fb6e7-8e8a-4e16-8e91-b34ea55dd2b4/download942882692cd259cae5e8d267f6ac1188MD55tede/80832017-12-28 07:43:26.12http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8083http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-12-28T09:43:26Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Bifurcações de campos vetoriais em duas zonas com simetria |
dc.title.alternative.eng.fl_str_mv |
Bifurcations of vector fields in two zones with symmetry |
title |
Bifurcações de campos vetoriais em duas zonas com simetria |
spellingShingle |
Bifurcações de campos vetoriais em duas zonas com simetria Castro, Ubirajara José Gama de Campos vetoriais em duas zonas Campos vetoriais reversíveis Campos vetoriais equivariantes Shilnikov Two-zones vector fields Reversible vector fields Equivariant vector field GEOMETRIA E TOPOLOGIA::SISTEMAS DINAMICOS |
title_short |
Bifurcações de campos vetoriais em duas zonas com simetria |
title_full |
Bifurcações de campos vetoriais em duas zonas com simetria |
title_fullStr |
Bifurcações de campos vetoriais em duas zonas com simetria |
title_full_unstemmed |
Bifurcações de campos vetoriais em duas zonas com simetria |
title_sort |
Bifurcações de campos vetoriais em duas zonas com simetria |
author |
Castro, Ubirajara José Gama de |
author_facet |
Castro, Ubirajara José Gama de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Medrado, João Carlos da Rocha |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/5021927574622286 |
dc.contributor.referee1.fl_str_mv |
Tonon, Durval José |
dc.contributor.referee2.fl_str_mv |
Pessoa, Cláudio Gomes |
dc.contributor.referee3.fl_str_mv |
Martins, Ricardo Miranda |
dc.contributor.referee4.fl_str_mv |
Oliveira, Regilene Delazari dos Santos |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/4957848617208610 |
dc.contributor.author.fl_str_mv |
Castro, Ubirajara José Gama de |
contributor_str_mv |
Medrado, João Carlos da Rocha Tonon, Durval José Pessoa, Cláudio Gomes Martins, Ricardo Miranda Oliveira, Regilene Delazari dos Santos |
dc.subject.por.fl_str_mv |
Campos vetoriais em duas zonas Campos vetoriais reversíveis Campos vetoriais equivariantes Shilnikov |
topic |
Campos vetoriais em duas zonas Campos vetoriais reversíveis Campos vetoriais equivariantes Shilnikov Two-zones vector fields Reversible vector fields Equivariant vector field GEOMETRIA E TOPOLOGIA::SISTEMAS DINAMICOS |
dc.subject.eng.fl_str_mv |
Two-zones vector fields Reversible vector fields Equivariant vector field |
dc.subject.cnpq.fl_str_mv |
GEOMETRIA E TOPOLOGIA::SISTEMAS DINAMICOS |
description |
In this work we study reversible vector fields in two zones and equivariant vector fields in two zones. Our main result is the classification of the symmetric singularities of codimensions 0,1 and 2 of such vector fields. More precisely, in the reversible case in R3, where the dimension of the fixed points variety of the involution associated to the vector field is 2, we present all bifurcation diagram of the codimensions 1 and 2 singularities, describing the changes in the behavior of the symmetric singularities and tangents of the vector field with the transition manifold, S, according to the variation of the bifucartion parameter. We also show the existence of invariant cylinders and, in this case, doing small perturbations we determine invariant manifolds that persisted and we determine the number of limit cycles that were born. When the vector field defined on two zones is equivariant, the dynamic is enriched with the emergence of the sliding vector field and we also do a local study and the classification of singularities (and pseudo-singularities) of codimensions 0,1 and 2. We show the existence of homoclinic sliding orbit and that it is a codimension one phenomenon. Moreover, provided the symmetry we get a double Shilnikov sliding orbit. |
publishDate |
2017 |
dc.date.accessioned.fl_str_mv |
2017-12-28T09:43:26Z |
dc.date.issued.fl_str_mv |
2017-11-28 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
CASTRO, Ubirajara José Gama de. Bifurcações de campos vetoriais em duas zonas com simetria. 2017. 119 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/8083 |
dc.identifier.dark.fl_str_mv |
ark:/38995/001300000f27q |
identifier_str_mv |
CASTRO, Ubirajara José Gama de. Bifurcações de campos vetoriais em duas zonas com simetria. 2017. 119 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017. ark:/38995/001300000f27q |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/8083 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
6600717948137941247 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 |
dc.relation.department.fl_str_mv |
-4268777512335152015 |
dc.relation.cnpq.fl_str_mv |
1858387081509645909 |
dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Matemática (IME) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Matemática e Estatística - IME (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/5dd1643a-7b40-4d55-8f6f-7ad4c13fe59f/download http://repositorio.bc.ufg.br/tede/bitstreams/5981d088-152e-42f6-bda3-ddb8d8e06a9e/download http://repositorio.bc.ufg.br/tede/bitstreams/7089beb9-0985-4a82-bea5-c79387113871/download http://repositorio.bc.ufg.br/tede/bitstreams/2e99c064-320f-44e4-a53d-15a6d7165497/download http://repositorio.bc.ufg.br/tede/bitstreams/759fb6e7-8e8a-4e16-8e91-b34ea55dd2b4/download |
bitstream.checksum.fl_str_mv |
bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 942882692cd259cae5e8d267f6ac1188 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172649306816512 |