Bifurcações de campos vetoriais em duas zonas com simetria

Detalhes bibliográficos
Autor(a) principal: Castro, Ubirajara José Gama de
Data de Publicação: 2017
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/001300000f27q
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/8083
Resumo: In this work we study reversible vector fields in two zones and equivariant vector fields in two zones. Our main result is the classification of the symmetric singularities of codimensions 0,1 and 2 of such vector fields. More precisely, in the reversible case in R3, where the dimension of the fixed points variety of the involution associated to the vector field is 2, we present all bifurcation diagram of the codimensions 1 and 2 singularities, describing the changes in the behavior of the symmetric singularities and tangents of the vector field with the transition manifold, S, according to the variation of the bifucartion parameter. We also show the existence of invariant cylinders and, in this case, doing small perturbations we determine invariant manifolds that persisted and we determine the number of limit cycles that were born. When the vector field defined on two zones is equivariant, the dynamic is enriched with the emergence of the sliding vector field and we also do a local study and the classification of singularities (and pseudo-singularities) of codimensions 0,1 and 2. We show the existence of homoclinic sliding orbit and that it is a codimension one phenomenon. Moreover, provided the symmetry we get a double Shilnikov sliding orbit.
id UFG-2_de8b2c79179bff319424ee54dcb20c4f
oai_identifier_str oai:repositorio.bc.ufg.br:tede/8083
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Medrado, João Carlos da Rochahttp://lattes.cnpq.br/5021927574622286Tonon, Durval JoséPessoa, Cláudio GomesMartins, Ricardo MirandaOliveira, Regilene Delazari dos Santoshttp://lattes.cnpq.br/4957848617208610Castro, Ubirajara José Gama de2017-12-28T09:43:26Z2017-11-28CASTRO, Ubirajara José Gama de. Bifurcações de campos vetoriais em duas zonas com simetria. 2017. 119 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.http://repositorio.bc.ufg.br/tede/handle/tede/8083ark:/38995/001300000f27qIn this work we study reversible vector fields in two zones and equivariant vector fields in two zones. Our main result is the classification of the symmetric singularities of codimensions 0,1 and 2 of such vector fields. More precisely, in the reversible case in R3, where the dimension of the fixed points variety of the involution associated to the vector field is 2, we present all bifurcation diagram of the codimensions 1 and 2 singularities, describing the changes in the behavior of the symmetric singularities and tangents of the vector field with the transition manifold, S, according to the variation of the bifucartion parameter. We also show the existence of invariant cylinders and, in this case, doing small perturbations we determine invariant manifolds that persisted and we determine the number of limit cycles that were born. When the vector field defined on two zones is equivariant, the dynamic is enriched with the emergence of the sliding vector field and we also do a local study and the classification of singularities (and pseudo-singularities) of codimensions 0,1 and 2. We show the existence of homoclinic sliding orbit and that it is a codimension one phenomenon. Moreover, provided the symmetry we get a double Shilnikov sliding orbit.Neste trabalho, estudamos campos vetoriais em duas zonas reversíveis e campos vetoriais em duas zonas equivariantes. Nosso resultado principal é a classificação das singularidades simétricas de codimensões 0, 1 e 2 de tais campos vetoriais. Mais precisamente, no caso reversível em R3, onde a dimensão da variedade de pontos fixos da involução associada ao campo vetorial é 2, apresentamos todos os diagramas de bifurcação das singularidades de codimensão 1 e 2, descrevendo as mudanças no comportamento das singularidades simétricas e das tangências do campo vetorial com a variedade de transição S, de acordo com a variação do parâmetro de bifurcação. Mostramos também a existência de cilindros invariantes e, nesse caso, fazendo pequenas perturbações determinamos variedades invariantes que persistiram e determinamos o número de ciclos limites que surgiram. Quando o campo vetorial definido em duas zonas é equivariante, a dinâmica é enriquecida com o surgimento do campo vetorial deslizante e também fazemos um estudo local e a classificação das singularidades (e pseudossingularidades) de codimensões 0, 1 e 2. Mostramos a existência de órbitas homoclínicas deslizantes e que esse é um fenômeno de codimensão 1 e devido à simetria do campo vetorial equivariante, teremos um duplo Shilnikov deslizante.Submitted by Franciele Moreira (francielemoreyra@gmail.com) on 2017-12-27T14:12:36Z No. of bitstreams: 2 Tese - Ubirajara José Gama de Castro - 2017.pdf: 14188106 bytes, checksum: 942882692cd259cae5e8d267f6ac1188 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-12-28T09:43:26Z (GMT) No. of bitstreams: 2 Tese - Ubirajara José Gama de Castro - 2017.pdf: 14188106 bytes, checksum: 942882692cd259cae5e8d267f6ac1188 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2017-12-28T09:43:26Z (GMT). No. of bitstreams: 2 Tese - Ubirajara José Gama de Castro - 2017.pdf: 14188106 bytes, checksum: 942882692cd259cae5e8d267f6ac1188 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-11-28Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Matemática (IME)UFGBrasilInstituto de Matemática e Estatística - IME (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessCampos vetoriais em duas zonasCampos vetoriais reversíveisCampos vetoriais equivariantesShilnikovTwo-zones vector fieldsReversible vector fieldsEquivariant vector fieldGEOMETRIA E TOPOLOGIA::SISTEMAS DINAMICOSBifurcações de campos vetoriais em duas zonas com simetriaBifurcations of vector fields in two zones with symmetryinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis6600717948137941247600600600600-426877751233515201518583870815096459092075167498588264571reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGLICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/5dd1643a-7b40-4d55-8f6f-7ad4c13fe59f/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/5981d088-152e-42f6-bda3-ddb8d8e06a9e/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/7089beb9-0985-4a82-bea5-c79387113871/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/2e99c064-320f-44e4-a53d-15a6d7165497/downloadd41d8cd98f00b204e9800998ecf8427eMD54ORIGINALTese - Ubirajara José Gama de Castro - 2017.pdfTese - Ubirajara José Gama de Castro - 2017.pdfapplication/pdf14188106http://repositorio.bc.ufg.br/tede/bitstreams/759fb6e7-8e8a-4e16-8e91-b34ea55dd2b4/download942882692cd259cae5e8d267f6ac1188MD55tede/80832017-12-28 07:43:26.12http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/8083http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2017-12-28T09:43:26Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.eng.fl_str_mv Bifurcações de campos vetoriais em duas zonas com simetria
dc.title.alternative.eng.fl_str_mv Bifurcations of vector fields in two zones with symmetry
title Bifurcações de campos vetoriais em duas zonas com simetria
spellingShingle Bifurcações de campos vetoriais em duas zonas com simetria
Castro, Ubirajara José Gama de
Campos vetoriais em duas zonas
Campos vetoriais reversíveis
Campos vetoriais equivariantes
Shilnikov
Two-zones vector fields
Reversible vector fields
Equivariant vector field
GEOMETRIA E TOPOLOGIA::SISTEMAS DINAMICOS
title_short Bifurcações de campos vetoriais em duas zonas com simetria
title_full Bifurcações de campos vetoriais em duas zonas com simetria
title_fullStr Bifurcações de campos vetoriais em duas zonas com simetria
title_full_unstemmed Bifurcações de campos vetoriais em duas zonas com simetria
title_sort Bifurcações de campos vetoriais em duas zonas com simetria
author Castro, Ubirajara José Gama de
author_facet Castro, Ubirajara José Gama de
author_role author
dc.contributor.advisor1.fl_str_mv Medrado, João Carlos da Rocha
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/5021927574622286
dc.contributor.referee1.fl_str_mv Tonon, Durval José
dc.contributor.referee2.fl_str_mv Pessoa, Cláudio Gomes
dc.contributor.referee3.fl_str_mv Martins, Ricardo Miranda
dc.contributor.referee4.fl_str_mv Oliveira, Regilene Delazari dos Santos
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/4957848617208610
dc.contributor.author.fl_str_mv Castro, Ubirajara José Gama de
contributor_str_mv Medrado, João Carlos da Rocha
Tonon, Durval José
Pessoa, Cláudio Gomes
Martins, Ricardo Miranda
Oliveira, Regilene Delazari dos Santos
dc.subject.por.fl_str_mv Campos vetoriais em duas zonas
Campos vetoriais reversíveis
Campos vetoriais equivariantes
Shilnikov
topic Campos vetoriais em duas zonas
Campos vetoriais reversíveis
Campos vetoriais equivariantes
Shilnikov
Two-zones vector fields
Reversible vector fields
Equivariant vector field
GEOMETRIA E TOPOLOGIA::SISTEMAS DINAMICOS
dc.subject.eng.fl_str_mv Two-zones vector fields
Reversible vector fields
Equivariant vector field
dc.subject.cnpq.fl_str_mv GEOMETRIA E TOPOLOGIA::SISTEMAS DINAMICOS
description In this work we study reversible vector fields in two zones and equivariant vector fields in two zones. Our main result is the classification of the symmetric singularities of codimensions 0,1 and 2 of such vector fields. More precisely, in the reversible case in R3, where the dimension of the fixed points variety of the involution associated to the vector field is 2, we present all bifurcation diagram of the codimensions 1 and 2 singularities, describing the changes in the behavior of the symmetric singularities and tangents of the vector field with the transition manifold, S, according to the variation of the bifucartion parameter. We also show the existence of invariant cylinders and, in this case, doing small perturbations we determine invariant manifolds that persisted and we determine the number of limit cycles that were born. When the vector field defined on two zones is equivariant, the dynamic is enriched with the emergence of the sliding vector field and we also do a local study and the classification of singularities (and pseudo-singularities) of codimensions 0,1 and 2. We show the existence of homoclinic sliding orbit and that it is a codimension one phenomenon. Moreover, provided the symmetry we get a double Shilnikov sliding orbit.
publishDate 2017
dc.date.accessioned.fl_str_mv 2017-12-28T09:43:26Z
dc.date.issued.fl_str_mv 2017-11-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv CASTRO, Ubirajara José Gama de. Bifurcações de campos vetoriais em duas zonas com simetria. 2017. 119 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/8083
dc.identifier.dark.fl_str_mv ark:/38995/001300000f27q
identifier_str_mv CASTRO, Ubirajara José Gama de. Bifurcações de campos vetoriais em duas zonas com simetria. 2017. 119 f. Tese (Doutorado em Matemática) - Universidade Federal de Goiás, Goiânia, 2017.
ark:/38995/001300000f27q
url http://repositorio.bc.ufg.br/tede/handle/tede/8083
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv 6600717948137941247
dc.relation.confidence.fl_str_mv 600
600
600
600
dc.relation.department.fl_str_mv -4268777512335152015
dc.relation.cnpq.fl_str_mv 1858387081509645909
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Matemática (IME)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Matemática e Estatística - IME (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/5dd1643a-7b40-4d55-8f6f-7ad4c13fe59f/download
http://repositorio.bc.ufg.br/tede/bitstreams/5981d088-152e-42f6-bda3-ddb8d8e06a9e/download
http://repositorio.bc.ufg.br/tede/bitstreams/7089beb9-0985-4a82-bea5-c79387113871/download
http://repositorio.bc.ufg.br/tede/bitstreams/2e99c064-320f-44e4-a53d-15a6d7165497/download
http://repositorio.bc.ufg.br/tede/bitstreams/759fb6e7-8e8a-4e16-8e91-b34ea55dd2b4/download
bitstream.checksum.fl_str_mv bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
942882692cd259cae5e8d267f6ac1188
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172649306816512