Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/00130000082z0 |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/10290 |
Resumo: | The genotypes by environments interaction (GxA) can be defined as the differential phenotypic response of genotypes in different environments. This phenomenon is the main complicating factor in recommending broadly adapted cultivars in common bean and others crops. The value of cultivation and use (VCU) tests are required for registration of new cultivars. These tests are intended to generate agronomic information about the performance of candidate lines for new cultivars in the various cultivation environments. The rules for conducting VCU tests were very restrictive as they require many tests to register the new cultivar. This step in the development process of new cultivars is the most costly for common bean breeding programs for logistical and operational reasons. Because of this, the standard rule has been relaxed since 2010 and was considers the regionalization of Brazil in edaphoclimatic regions. Thus, ten environments are currently accepted for regions I (South) and II (Central), and six environments for Region III (Northeast). Of which three environments are required per sowing season for the season in which the cultivar is to be indicated. The sowing seasons are for region I “waters” (águas) and “drought” (seca); and for region II "waters" and "winter" (inverno). The tests must be conducted for two years. Thus, this work aims to: validate the number of environments (VCU assays) currently accepted for registration of new cultivars, through computer simulations with real data, and; to evaluate environmental factors to determine their relevance to the phenotypic variation of candidate lines. Grain yield data were used for the study. Data were obtained from 406 VCU trials during 17 years of the common bean breeding program of Embrapa Rice and Beans. During this period 101 candidate lines and 19 commercial cultivars were evaluated as control. The trials were distributed among the three edaphoclimatic regions that contribute most for of the common common bean grain production. For the simulation study an algorithm was built to randomly sample the environments in various combinations. The combinations represent several scenarios, which vary in the number of environments. 288646 simulations were performed and the five best classified genotypes were compared, by coincidence, with the five classified in the complete joint analysis. This analysis uses all available environments in each VCU cycle (two years). Nonlinear modeling was used to adjust estimates to the asymptotic curve to obtain the adjusted averages of coincidence. The curve equation was derived to obtain the instantaneous rate of change. For the criterion of determining the minimum number of environments, the mean value theorem was used to estimate the average rate of change (∆dM) between scenarios, where the x value for the average rate represents the minimum number of environments. For the study of environmental factors two approaches were used: the modeling by mixed models to estimate the variance components and; the classical approach to analysis of variance with decomposition of GxA interaction. In addition to these analyzes, the GxA interaction was decomposed into the simple and complex parts. The results of the simulation study indicated high average coincidence between genotypes even in scenarios with few environments. The elevation of the coincidence was progressive until the scenario with eight environments in regions I and II, which represents the point of ∆dM. However, the number of currently accepted environments (ten) for these regions was more appropriate. For region III, the ∆dM occurred 6.25 indicating that the minimum number of environments for this region is capable of detecting the genotypes most adapted to this region. For sowing seasons, three environments resulted in estimates of over 60% of average coincidence, except for the winter season (53.4%). Thus, it is concluded that the number of environments currently accepted for registration of new cultivars is capable of indicating the superior genotypes. The mixed model evaluation of the environmental factors analysis by region indicated that the GxLxExA interaction is the component of variance that contributes most to the total variance, followed by the effect of locations for regions I and II. In region III the effect of sites was the most important of the components. The analysis of variance of the factors and their partial decompositions indicated that in region I that the isolated effects of times and places together with the GxL interaction were more relevant. In region II, GxE interaction was the most significant componet involving genotypes. The isolated environmental components varied in importance between cycles in the region II. The local effect and GxL interaction are the most expressive components in region III. The decomposition of the interaction was predominantly complex in all studied cycles for all regions. It is concluded, therefore, that in region II the environmental factors sowing seasons, years and location were the ones that participated with most of the total variation. GxE was the most significant among the interactions of environmental factors involving genotypes in region II. In region III the main sources of variation for the isolated effects were location and years, in that order. The variance components indicated that the interaction of genotypes with the environmental components were more important for regions I and II, and for region III the location effect was more relevant. The location effect is the isolated variance component that most contributes to the total variation in all regions. The type of complex interaction was predominant among the combined assays in all regions. |
id |
UFG-2_f2de5b020bf7fb9d04d5805f66af7f5a |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/10290 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Melo, Patrícia Guimarães Santoshttp://lattes.cnpq.br/1508679345970114Melo, Leonardo Cunhahttp://lattes.cnpq.br/9132553601896172Melo, Leonardo CunhaMello Filho, Odilon Lemos dePereira, Helton SantosSilva Filho, João Luís daAbreu, Ângela de Fátima Barbosahttp://lattes.cnpq.br/5215439142048208Barros, Matheus Souza de2020-01-13T12:46:41Z2019-11-14BARROS, M. S. Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais. 2019. 94 f. Tese (Doutorado em Genética e Melhoramento de Plantas) - Universidade Federal de Goiás, Goiânia, 2019.http://repositorio.bc.ufg.br/tede/handle/tede/10290ark:/38995/00130000082z0The genotypes by environments interaction (GxA) can be defined as the differential phenotypic response of genotypes in different environments. This phenomenon is the main complicating factor in recommending broadly adapted cultivars in common bean and others crops. The value of cultivation and use (VCU) tests are required for registration of new cultivars. These tests are intended to generate agronomic information about the performance of candidate lines for new cultivars in the various cultivation environments. The rules for conducting VCU tests were very restrictive as they require many tests to register the new cultivar. This step in the development process of new cultivars is the most costly for common bean breeding programs for logistical and operational reasons. Because of this, the standard rule has been relaxed since 2010 and was considers the regionalization of Brazil in edaphoclimatic regions. Thus, ten environments are currently accepted for regions I (South) and II (Central), and six environments for Region III (Northeast). Of which three environments are required per sowing season for the season in which the cultivar is to be indicated. The sowing seasons are for region I “waters” (águas) and “drought” (seca); and for region II "waters" and "winter" (inverno). The tests must be conducted for two years. Thus, this work aims to: validate the number of environments (VCU assays) currently accepted for registration of new cultivars, through computer simulations with real data, and; to evaluate environmental factors to determine their relevance to the phenotypic variation of candidate lines. Grain yield data were used for the study. Data were obtained from 406 VCU trials during 17 years of the common bean breeding program of Embrapa Rice and Beans. During this period 101 candidate lines and 19 commercial cultivars were evaluated as control. The trials were distributed among the three edaphoclimatic regions that contribute most for of the common common bean grain production. For the simulation study an algorithm was built to randomly sample the environments in various combinations. The combinations represent several scenarios, which vary in the number of environments. 288646 simulations were performed and the five best classified genotypes were compared, by coincidence, with the five classified in the complete joint analysis. This analysis uses all available environments in each VCU cycle (two years). Nonlinear modeling was used to adjust estimates to the asymptotic curve to obtain the adjusted averages of coincidence. The curve equation was derived to obtain the instantaneous rate of change. For the criterion of determining the minimum number of environments, the mean value theorem was used to estimate the average rate of change (∆dM) between scenarios, where the x value for the average rate represents the minimum number of environments. For the study of environmental factors two approaches were used: the modeling by mixed models to estimate the variance components and; the classical approach to analysis of variance with decomposition of GxA interaction. In addition to these analyzes, the GxA interaction was decomposed into the simple and complex parts. The results of the simulation study indicated high average coincidence between genotypes even in scenarios with few environments. The elevation of the coincidence was progressive until the scenario with eight environments in regions I and II, which represents the point of ∆dM. However, the number of currently accepted environments (ten) for these regions was more appropriate. For region III, the ∆dM occurred 6.25 indicating that the minimum number of environments for this region is capable of detecting the genotypes most adapted to this region. For sowing seasons, three environments resulted in estimates of over 60% of average coincidence, except for the winter season (53.4%). Thus, it is concluded that the number of environments currently accepted for registration of new cultivars is capable of indicating the superior genotypes. The mixed model evaluation of the environmental factors analysis by region indicated that the GxLxExA interaction is the component of variance that contributes most to the total variance, followed by the effect of locations for regions I and II. In region III the effect of sites was the most important of the components. The analysis of variance of the factors and their partial decompositions indicated that in region I that the isolated effects of times and places together with the GxL interaction were more relevant. In region II, GxE interaction was the most significant componet involving genotypes. The isolated environmental components varied in importance between cycles in the region II. The local effect and GxL interaction are the most expressive components in region III. The decomposition of the interaction was predominantly complex in all studied cycles for all regions. It is concluded, therefore, that in region II the environmental factors sowing seasons, years and location were the ones that participated with most of the total variation. GxE was the most significant among the interactions of environmental factors involving genotypes in region II. In region III the main sources of variation for the isolated effects were location and years, in that order. The variance components indicated that the interaction of genotypes with the environmental components were more important for regions I and II, and for region III the location effect was more relevant. The location effect is the isolated variance component that most contributes to the total variation in all regions. The type of complex interaction was predominant among the combined assays in all regions.A interação de genótipos com ambientes (GxA) pode ser definida como a resposta fenotípica diferencial dos genótipos em ambientes distintos. Esse fenômeno é o principal complicador na recomendação de cultivares de adaptação ampla em feijoeiro comum e em outras culturas agrícolas. Os ensaios de valor de cultivo e uso (VCU) são exigidos para o registro de novas cultivares. Esses ensaios tem o propósito de gerar informações agronômica acerca do desempenho das linhagens candidatas a novas cultivares nos vários ambientes de cultivo. As normas para a condução de ensaios de VCU são muito restritivas, pois exigem muitos ensaios para registro da nova cultivar. Essa etapa no processo de desenvolvimento de novas cultivares é a mais onerosa para os programas de melhoramento de feijoeiro comum por motivos logísticos e operacionais. Devido a isso, a norma foi flexibilizada desde o ano de 2010 e considera a regionalização do Brasil em regiões edafoclimáticas. Dessa forma, atualmente são aceitos dez ambientes para as regiões I (Sul) e II (Central), e seis ambientes para a região III (Nordeste). Dos quais, três ambientes são exigidos por época de semeadura, para a época na qual se pretende indicar a cultivar. As épocas são para região I “águas” e “seca”; e para região II “águas” e “inverno”. Os ensaios devem ser conduzidos por dois anos. Assim, este trabalho tem como objetivos: validar a quantidade de ambientes (ensaios de VCU) atualmente aceitos para registro de novas cultivares de feijoeiro comum, por meio de simulações computacionais com dados reais, e; avaliar os fatores ambientais para determinar sua relevância na variação fenotípica das linhagens candidatas. Para o estudo foram utilizados dados de produtividade de grãos. Os dados foram obtidos em 406 ensaios de VCU durante 17 anos do programa de melhoramento do feijoeiro comum da Embrapa Arroz e Feijão. Nesse período foram avaliadas 101 linhagens candidatas e 19 cultivares comerciais como testemunhas. Os ensaios foram distribuídos pelas três regiões edafoclimáticas que contribuem com a maior parcela da produção nacional de feijoeiro comum. Para o estudo de simulação foi construído um algoritmo para amostrar aleatoriamente os ambientes em várias combinações. As combinações representam diversos cenários, os quais variam na quantidade de ambientes. Foram realizadas 288646 simulações e os cinco genótipos melhores classificados foram comparados, quanto à coincidência, com os cinco classificados na análise conjunta completa. Essa análise utiliza todos os ambientes disponíveis em cada ciclo de VCU. Foi utilizada a modelagem não linear para ajustar as estimativas à curva assintótica para obtenção das médias ajustadas. A equação da curva foi derivada para obtenção da taxa de variação instantânea. Para o critério de determinação da quantidade mínima de ambientes utilizou-se o teorema do valor médio para estimar a taxa média de variação (∆dM) entre cenários, em que, o valor de x para a taxa média representa a quantidade mínima de ambientes. Para o estudo dos fatores ambientais foram utilizadas duas abordagens: a modelagem por modelos mistos para estimação dos componentes de variância e; a abordagem clássica de análise de variância com decomposição da interação GxA. Além dessas análises foi realizada a decomposição da interação GxA nas partes simples e complexa. Os resultados do estudo de simulação indicaram elevada coincidência média entre os genótipos mesmo em cenários com poucos ambientes. A elevação da coincidência foi progressiva até o cenário com oito ambientes nas regiões I e II, que representa o ponto do ∆dM. No entanto, a quantidade de ambientes atualmente aceitos (dez) para essas regiões mostrou-se mais adequado. Para a região III, o ∆dM ocorreu 6,25 indicando que a quantidade mínima de ambientes para essa região é capaz de detectar os genótipos mais adaptados a essa região. Para épocas de semeadura três ambientes resultaram em estimativas superiores a 60% de coincidência média, exceto pela época de inverno (53,4%). Dessa forma, conclui -se que a quantidade de ambientes atualmente aceitos para registro de novas cultivares é capaz de indicar os genótipos superiores. A avaliação via modelo misto, da análise dos fatores ambientais, por região indicou que a interação GxLxExA é o componente de variância que contribui mais para a variância total, seguido do efeito de locais para as regiões I e II. Na região III o efeito de locais foi o mais importante dos componentes. A análise de variância dos fatores e suas decomposições parciais indicaram que na região I os efeitos isolados de épocas e locais juntamente com a interação GxL foram mais relevantes. Na região II a interação de GxE foi a mais expressiva envolvendo genótipos. Os componentes ambientais isolados variaram sua importância entre ciclos, nessa região. O efeito de locais e a interação GxL são os componentes mais expressivos na região III. A decomposição da interação foi predominantemente complexa em todos os ciclos estudados. Conclui-se, portanto, que na região II os fatores ambientais épocas, anos e locais foram os que participaram com a maior parte da variação total. A interação de GxE foi a mais expressiva entre as interações dos fatores ambientais envolvendo genótipos na região II. Na região III as principais fontes de variação para os efeitos isolados foram locais e anos, nessa ordem. Os componentes de variância indicaram que a interação de genótipos com os componentes ambientais foram mais importantes para as regiões I e II, e para região III o efeito de local foi mais relevante. O efeito de local é o componente de variância isolado que mais contribui para a variação total em todas as regiões. A interação do tipo complexa foi predominante entre os ensaios combinados em todas as regiões.Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2020-01-10T15:10:21Z No. of bitstreams: 2 Tese - Matheus Souza de Barros - 2019.pdf: 2157771 bytes, checksum: b6e8871d136fd83bddc54d3077267b7a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2020-01-13T12:46:41Z (GMT) No. of bitstreams: 2 Tese - Matheus Souza de Barros - 2019.pdf: 2157771 bytes, checksum: b6e8871d136fd83bddc54d3077267b7a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5)Made available in DSpace on 2020-01-13T12:46:41Z (GMT). No. of bitstreams: 2 Tese - Matheus Souza de Barros - 2019.pdf: 2157771 bytes, checksum: b6e8871d136fd83bddc54d3077267b7a (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2019-11-14application/pdfporUniversidade Federal de GoiásPrograma de Pós-graduação em Genética e Melhoramento de Plantas (EA)UFGBrasilEscola de Agronomia - EA (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessPhaseolus vulgarisSimulação computacionalComponentes de variânciaModelos mistosInteração de genótipos com ambientesPhaseolus vulgarisComputer simulationVariance componentsMixed modelsGenotypes by environments interactionGENETICA::GENETICA VEGETALImplicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientaisImplication of the genotype-by-environment interaction in common bean cultivar recommendation: Rules validation and importance of environmental factorsinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-6265679607231828330600600600-6046953723502374070-7397920248419280716reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/7fa6d2d5-14bf-4429-bb26-2207a493bd4b/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/b52878fa-a0da-4293-81ae-9bf2ef92db57/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://repositorio.bc.ufg.br/tede/bitstreams/48d3ccc9-28e9-441f-ba3c-8d73a2731cbd/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/bc1cc503-3c55-40a6-adce-8054d4f3ab79/downloadbd3efa91386c1718a7f26a329fdcb468MD51ORIGINALTese - Matheus Souza de Barros - 2019.pdfTese - Matheus Souza de Barros - 2019.pdfapplication/pdf2157771http://repositorio.bc.ufg.br/tede/bitstreams/77af34ad-d4a5-4788-bae5-4c0fa11fb69c/downloadb6e8871d136fd83bddc54d3077267b7aMD55tede/102902020-01-13 09:46:41.237http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/10290http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2020-01-13T12:46:41Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.eng.fl_str_mv |
Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais |
dc.title.alternative.eng.fl_str_mv |
Implication of the genotype-by-environment interaction in common bean cultivar recommendation: Rules validation and importance of environmental factors |
title |
Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais |
spellingShingle |
Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais Barros, Matheus Souza de Phaseolus vulgaris Simulação computacional Componentes de variância Modelos mistos Interação de genótipos com ambientes Phaseolus vulgaris Computer simulation Variance components Mixed models Genotypes by environments interaction GENETICA::GENETICA VEGETAL |
title_short |
Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais |
title_full |
Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais |
title_fullStr |
Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais |
title_full_unstemmed |
Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais |
title_sort |
Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais |
author |
Barros, Matheus Souza de |
author_facet |
Barros, Matheus Souza de |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Melo, Patrícia Guimarães Santos |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/1508679345970114 |
dc.contributor.advisor-co1.fl_str_mv |
Melo, Leonardo Cunha |
dc.contributor.advisor-co1Lattes.fl_str_mv |
http://lattes.cnpq.br/9132553601896172 |
dc.contributor.referee1.fl_str_mv |
Melo, Leonardo Cunha |
dc.contributor.referee2.fl_str_mv |
Mello Filho, Odilon Lemos de |
dc.contributor.referee3.fl_str_mv |
Pereira, Helton Santos |
dc.contributor.referee4.fl_str_mv |
Silva Filho, João Luís da |
dc.contributor.referee5.fl_str_mv |
Abreu, Ângela de Fátima Barbosa |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5215439142048208 |
dc.contributor.author.fl_str_mv |
Barros, Matheus Souza de |
contributor_str_mv |
Melo, Patrícia Guimarães Santos Melo, Leonardo Cunha Melo, Leonardo Cunha Mello Filho, Odilon Lemos de Pereira, Helton Santos Silva Filho, João Luís da Abreu, Ângela de Fátima Barbosa |
dc.subject.por.fl_str_mv |
Phaseolus vulgaris Simulação computacional Componentes de variância Modelos mistos Interação de genótipos com ambientes |
topic |
Phaseolus vulgaris Simulação computacional Componentes de variância Modelos mistos Interação de genótipos com ambientes Phaseolus vulgaris Computer simulation Variance components Mixed models Genotypes by environments interaction GENETICA::GENETICA VEGETAL |
dc.subject.eng.fl_str_mv |
Phaseolus vulgaris Computer simulation Variance components Mixed models Genotypes by environments interaction |
dc.subject.cnpq.fl_str_mv |
GENETICA::GENETICA VEGETAL |
description |
The genotypes by environments interaction (GxA) can be defined as the differential phenotypic response of genotypes in different environments. This phenomenon is the main complicating factor in recommending broadly adapted cultivars in common bean and others crops. The value of cultivation and use (VCU) tests are required for registration of new cultivars. These tests are intended to generate agronomic information about the performance of candidate lines for new cultivars in the various cultivation environments. The rules for conducting VCU tests were very restrictive as they require many tests to register the new cultivar. This step in the development process of new cultivars is the most costly for common bean breeding programs for logistical and operational reasons. Because of this, the standard rule has been relaxed since 2010 and was considers the regionalization of Brazil in edaphoclimatic regions. Thus, ten environments are currently accepted for regions I (South) and II (Central), and six environments for Region III (Northeast). Of which three environments are required per sowing season for the season in which the cultivar is to be indicated. The sowing seasons are for region I “waters” (águas) and “drought” (seca); and for region II "waters" and "winter" (inverno). The tests must be conducted for two years. Thus, this work aims to: validate the number of environments (VCU assays) currently accepted for registration of new cultivars, through computer simulations with real data, and; to evaluate environmental factors to determine their relevance to the phenotypic variation of candidate lines. Grain yield data were used for the study. Data were obtained from 406 VCU trials during 17 years of the common bean breeding program of Embrapa Rice and Beans. During this period 101 candidate lines and 19 commercial cultivars were evaluated as control. The trials were distributed among the three edaphoclimatic regions that contribute most for of the common common bean grain production. For the simulation study an algorithm was built to randomly sample the environments in various combinations. The combinations represent several scenarios, which vary in the number of environments. 288646 simulations were performed and the five best classified genotypes were compared, by coincidence, with the five classified in the complete joint analysis. This analysis uses all available environments in each VCU cycle (two years). Nonlinear modeling was used to adjust estimates to the asymptotic curve to obtain the adjusted averages of coincidence. The curve equation was derived to obtain the instantaneous rate of change. For the criterion of determining the minimum number of environments, the mean value theorem was used to estimate the average rate of change (∆dM) between scenarios, where the x value for the average rate represents the minimum number of environments. For the study of environmental factors two approaches were used: the modeling by mixed models to estimate the variance components and; the classical approach to analysis of variance with decomposition of GxA interaction. In addition to these analyzes, the GxA interaction was decomposed into the simple and complex parts. The results of the simulation study indicated high average coincidence between genotypes even in scenarios with few environments. The elevation of the coincidence was progressive until the scenario with eight environments in regions I and II, which represents the point of ∆dM. However, the number of currently accepted environments (ten) for these regions was more appropriate. For region III, the ∆dM occurred 6.25 indicating that the minimum number of environments for this region is capable of detecting the genotypes most adapted to this region. For sowing seasons, three environments resulted in estimates of over 60% of average coincidence, except for the winter season (53.4%). Thus, it is concluded that the number of environments currently accepted for registration of new cultivars is capable of indicating the superior genotypes. The mixed model evaluation of the environmental factors analysis by region indicated that the GxLxExA interaction is the component of variance that contributes most to the total variance, followed by the effect of locations for regions I and II. In region III the effect of sites was the most important of the components. The analysis of variance of the factors and their partial decompositions indicated that in region I that the isolated effects of times and places together with the GxL interaction were more relevant. In region II, GxE interaction was the most significant componet involving genotypes. The isolated environmental components varied in importance between cycles in the region II. The local effect and GxL interaction are the most expressive components in region III. The decomposition of the interaction was predominantly complex in all studied cycles for all regions. It is concluded, therefore, that in region II the environmental factors sowing seasons, years and location were the ones that participated with most of the total variation. GxE was the most significant among the interactions of environmental factors involving genotypes in region II. In region III the main sources of variation for the isolated effects were location and years, in that order. The variance components indicated that the interaction of genotypes with the environmental components were more important for regions I and II, and for region III the location effect was more relevant. The location effect is the isolated variance component that most contributes to the total variation in all regions. The type of complex interaction was predominant among the combined assays in all regions. |
publishDate |
2019 |
dc.date.issued.fl_str_mv |
2019-11-14 |
dc.date.accessioned.fl_str_mv |
2020-01-13T12:46:41Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
BARROS, M. S. Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais. 2019. 94 f. Tese (Doutorado em Genética e Melhoramento de Plantas) - Universidade Federal de Goiás, Goiânia, 2019. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/10290 |
dc.identifier.dark.fl_str_mv |
ark:/38995/00130000082z0 |
identifier_str_mv |
BARROS, M. S. Implicações da interação de genótipos com ambientes na recomendação de cultivares de feijoeiro comum: validação de regras e importância de fatores ambientais. 2019. 94 f. Tese (Doutorado em Genética e Melhoramento de Plantas) - Universidade Federal de Goiás, Goiânia, 2019. ark:/38995/00130000082z0 |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/10290 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-6265679607231828330 |
dc.relation.confidence.fl_str_mv |
600 600 600 |
dc.relation.department.fl_str_mv |
-6046953723502374070 |
dc.relation.cnpq.fl_str_mv |
-7397920248419280716 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Genética e Melhoramento de Plantas (EA) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Escola de Agronomia - EA (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/7fa6d2d5-14bf-4429-bb26-2207a493bd4b/download http://repositorio.bc.ufg.br/tede/bitstreams/b52878fa-a0da-4293-81ae-9bf2ef92db57/download http://repositorio.bc.ufg.br/tede/bitstreams/48d3ccc9-28e9-441f-ba3c-8d73a2731cbd/download http://repositorio.bc.ufg.br/tede/bitstreams/bc1cc503-3c55-40a6-adce-8054d4f3ab79/download http://repositorio.bc.ufg.br/tede/bitstreams/77af34ad-d4a5-4788-bae5-4c0fa11fb69c/download |
bitstream.checksum.fl_str_mv |
4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e bd3efa91386c1718a7f26a329fdcb468 b6e8871d136fd83bddc54d3077267b7a |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172596200636416 |