Reconhecimento polinomial de álgebras cluster de tipo finito
Autor(a) principal: | |
---|---|
Data de Publicação: | 2015 |
Tipo de documento: | Tese |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFG |
dARK ID: | ark:/38995/0013000005pcb |
Texto Completo: | http://repositorio.bc.ufg.br/tede/handle/tede/4848 |
Resumo: | Cluster algebras form a class of commutative algebra, introduced at the beginning of the millennium by Fomin and Zelevinsky. They are defined constructively from a set of generating variables (cluster variables) grouped into overlapping subsets (clusters) of fixed cardinality. Since its inception, the theory of cluster algebras found applications in many areas of science, specially in mathematics. In this thesis, we study, with computational focus, the recognition of cluster algebras of finite type. In 2006, Barot, Geiss and Zelevinsky showed that a cluster algebra is of finite type whether the associated graph is cyclically oriented, i.e., all chordless cycles of the graph are cyclically oriented, and whether the skew-symmetrizable matrix associated has a positive quasi-Cartan companion. At first, we studied the two topics independently. Related to the first part of the criteria, we developed an algorithm that lists all chordless cycles (polynomial on the length of those cycles) and another that checks whether a graph is cyclically oriented and, if so, list all their chordless cycles (polynomial on the number of vertices). Related to the second part of the criteria, we developed some theoretical results and we also developed a polynomial algorithm that checks whether a quasi-Cartan companion matrix is positive. The latter algorithm is used to prove that the problem of deciding whether a skew-symmetrizable matrix has a positive quasi-Cartan companion for general graphs is in NP class. We conjecture that this problem is in NP-complete class.We show that the same problem belongs to the class of polynomial problems for cyclically oriented graphs and, finally, we show that deciding whether a cluster algebra is of finite type also belongs to this class. |
id |
UFG-2_f8dd33c2d077191ccdfcc4d6cb18f626 |
---|---|
oai_identifier_str |
oai:repositorio.bc.ufg.br:tede/4848 |
network_acronym_str |
UFG-2 |
network_name_str |
Repositório Institucional da UFG |
repository_id_str |
|
spelling |
Castonguay, Dianehttp://lattes.cnpq.br/4005898623592261Castonguay, DianeSchiffler, RalfDourado, Mitre CostaCarvalho, Marcelo Henrique deLongo, Humberto Joséhttp://lattes.cnpq.br/0138908377103572Dias, Elisângela SIlva2015-11-03T14:30:02Z2015-09-09DIAS, E. S. Reconhecimento polinomial de álgebras cluster de tipo finito. 2015. 123 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015.http://repositorio.bc.ufg.br/tede/handle/tede/4848ark:/38995/0013000005pcbCluster algebras form a class of commutative algebra, introduced at the beginning of the millennium by Fomin and Zelevinsky. They are defined constructively from a set of generating variables (cluster variables) grouped into overlapping subsets (clusters) of fixed cardinality. Since its inception, the theory of cluster algebras found applications in many areas of science, specially in mathematics. In this thesis, we study, with computational focus, the recognition of cluster algebras of finite type. In 2006, Barot, Geiss and Zelevinsky showed that a cluster algebra is of finite type whether the associated graph is cyclically oriented, i.e., all chordless cycles of the graph are cyclically oriented, and whether the skew-symmetrizable matrix associated has a positive quasi-Cartan companion. At first, we studied the two topics independently. Related to the first part of the criteria, we developed an algorithm that lists all chordless cycles (polynomial on the length of those cycles) and another that checks whether a graph is cyclically oriented and, if so, list all their chordless cycles (polynomial on the number of vertices). Related to the second part of the criteria, we developed some theoretical results and we also developed a polynomial algorithm that checks whether a quasi-Cartan companion matrix is positive. The latter algorithm is used to prove that the problem of deciding whether a skew-symmetrizable matrix has a positive quasi-Cartan companion for general graphs is in NP class. We conjecture that this problem is in NP-complete class.We show that the same problem belongs to the class of polynomial problems for cyclically oriented graphs and, finally, we show that deciding whether a cluster algebra is of finite type also belongs to this class.As álgebras cluster formam uma classe de álgebras comutativas introduzida no início do milênio por Fomin e Zelevinsky. Elas são definidas de forma construtiva a partir de um conjunto de variáveis geradoras (variáveis cluster) agrupadas em subconjuntos sobrepostos (clusters) de cardinalidade fixa. Desde a sua criação, a teoria das álgebras cluster encontrou aplicações em diversas áreas da matemática e afins. Nesta tese, estudamos, com foco computacional, o reconhecimento das álgebras cluster de tipo finito. Em 2006, Barot, Geiss e Zelevinsky mostraram que uma álgebra cluster é de tipo finito se o grafo associado é ciclicamente orientado, isto é, todos os ciclos sem corda do grafo são ciclicamente orientados, e se a matriz antissimetrizável associada possui uma companheira quase-Cartan positiva. Em um primeiro momento, estudamos os dois tópicos de forma independente. Em relação à primeira parte do critério, elaboramos um algoritmo que lista todos os ciclos sem corda (polinomial no tamanho destes ciclos) e outro que verifica se um grafo é ciclicamente orientado e, em caso positivo, lista todos os seus ciclos sem corda (polinomial na quantidade de vértices). Relacionado à segunda parte do critério, desenvolvemos alguns resultados teóricos e elaboramos um algoritmo polinomial que verifica se uma matriz companheira quase-Cartan é positiva. Este último algoritmo é utilizado para provar que o problema de decidir se uma matriz antissimetrizável tem uma companheira quase-Cartan positiva para grafos gerais está na classe NP. Conjecturamos que este problema pertence à classe NP-completa. Mostramos que o mesmo pertence à classe de problemas polinomiais para grafos ciclicamente orientados e, por fim, mostramos que decidir se uma álgebra cluster é de tipo finito também pertence a esta classe.Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2015-10-29T19:17:43Z No. of bitstreams: 2 Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:30:02Z (GMT) No. of bitstreams: 2 Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2015-11-03T14:30:02Z (GMT). No. of bitstreams: 2 Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-09-09Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/22398/Tese%20-%20Elis%c3%a2ngela%20Silva%20Dias%20-%202015.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessÁlgebras clusterCiclos sem cordaGrafos ciclicamente orientáveisMatriz positivaCluster algebrasChordless cyclesCyclically orientable graphsPositive matrixCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOReconhecimento polinomial de álgebras cluster de tipo finitoPolynomial recognition of cluster algebras of finite typeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-3303550325223384799600600600600600-771226673463364476889300925156837715313671711205811204509-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALTese - Elisângela Silva Dias - 2015.pdfTese - Elisângela Silva Dias - 2015.pdfapplication/pdf1107380http://repositorio.bc.ufg.br/tede/bitstreams/eb02ed2b-275c-4e10-a250-b42eac34ff95/downloade288bc934158fa879639c403bb15ba54MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/808b294f-1c1a-4b8f-a9c3-385bb4cb3b6d/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/fd2fb7d8-3f20-421d-9871-a41d095b2120/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-821328http://repositorio.bc.ufg.br/tede/bitstreams/59d4358a-0802-4796-a765-243b4c5a3fd3/download683d9883b2ad62ac3b8bafc566b2e600MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/317b2d1c-1033-4fd6-ab1d-45f039217267/download9da0b6dfac957114c6a7714714b86306MD54TEXTTese - Elisângela Silva Dias - 2015.pdf.txtTese - Elisângela Silva Dias - 2015.pdf.txtExtracted Texttext/plain214420http://repositorio.bc.ufg.br/tede/bitstreams/cbac7465-26cc-443b-8995-59a33f5ff02f/downloadf542ba4f49532c8a1ea5833a8faf2b7dMD56THUMBNAILTese - Elisângela Silva Dias - 2015.pdf.jpgTese - Elisângela Silva Dias - 2015.pdf.jpgGenerated Thumbnailimage/jpeg3130http://repositorio.bc.ufg.br/tede/bitstreams/d2b44c54-d116-4e08-bc5c-36fe84897af3/downloadccff5dcbef3f493b19c5d9a02ed3c7feMD57tede/48482019-06-27 09:41:05.905http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/4848http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-06-27T12:41:05Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo= |
dc.title.por.fl_str_mv |
Reconhecimento polinomial de álgebras cluster de tipo finito |
dc.title.alternative.eng.fl_str_mv |
Polynomial recognition of cluster algebras of finite type |
title |
Reconhecimento polinomial de álgebras cluster de tipo finito |
spellingShingle |
Reconhecimento polinomial de álgebras cluster de tipo finito Dias, Elisângela SIlva Álgebras cluster Ciclos sem corda Grafos ciclicamente orientáveis Matriz positiva Cluster algebras Chordless cycles Cyclically orientable graphs Positive matrix CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
title_short |
Reconhecimento polinomial de álgebras cluster de tipo finito |
title_full |
Reconhecimento polinomial de álgebras cluster de tipo finito |
title_fullStr |
Reconhecimento polinomial de álgebras cluster de tipo finito |
title_full_unstemmed |
Reconhecimento polinomial de álgebras cluster de tipo finito |
title_sort |
Reconhecimento polinomial de álgebras cluster de tipo finito |
author |
Dias, Elisângela SIlva |
author_facet |
Dias, Elisângela SIlva |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Castonguay, Diane |
dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/4005898623592261 |
dc.contributor.referee1.fl_str_mv |
Castonguay, Diane |
dc.contributor.referee2.fl_str_mv |
Schiffler, Ralf |
dc.contributor.referee3.fl_str_mv |
Dourado, Mitre Costa |
dc.contributor.referee4.fl_str_mv |
Carvalho, Marcelo Henrique de |
dc.contributor.referee5.fl_str_mv |
Longo, Humberto José |
dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/0138908377103572 |
dc.contributor.author.fl_str_mv |
Dias, Elisângela SIlva |
contributor_str_mv |
Castonguay, Diane Castonguay, Diane Schiffler, Ralf Dourado, Mitre Costa Carvalho, Marcelo Henrique de Longo, Humberto José |
dc.subject.por.fl_str_mv |
Álgebras cluster Ciclos sem corda Grafos ciclicamente orientáveis Matriz positiva |
topic |
Álgebras cluster Ciclos sem corda Grafos ciclicamente orientáveis Matriz positiva Cluster algebras Chordless cycles Cyclically orientable graphs Positive matrix CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
dc.subject.eng.fl_str_mv |
Cluster algebras Chordless cycles Cyclically orientable graphs Positive matrix |
dc.subject.cnpq.fl_str_mv |
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO |
description |
Cluster algebras form a class of commutative algebra, introduced at the beginning of the millennium by Fomin and Zelevinsky. They are defined constructively from a set of generating variables (cluster variables) grouped into overlapping subsets (clusters) of fixed cardinality. Since its inception, the theory of cluster algebras found applications in many areas of science, specially in mathematics. In this thesis, we study, with computational focus, the recognition of cluster algebras of finite type. In 2006, Barot, Geiss and Zelevinsky showed that a cluster algebra is of finite type whether the associated graph is cyclically oriented, i.e., all chordless cycles of the graph are cyclically oriented, and whether the skew-symmetrizable matrix associated has a positive quasi-Cartan companion. At first, we studied the two topics independently. Related to the first part of the criteria, we developed an algorithm that lists all chordless cycles (polynomial on the length of those cycles) and another that checks whether a graph is cyclically oriented and, if so, list all their chordless cycles (polynomial on the number of vertices). Related to the second part of the criteria, we developed some theoretical results and we also developed a polynomial algorithm that checks whether a quasi-Cartan companion matrix is positive. The latter algorithm is used to prove that the problem of deciding whether a skew-symmetrizable matrix has a positive quasi-Cartan companion for general graphs is in NP class. We conjecture that this problem is in NP-complete class.We show that the same problem belongs to the class of polynomial problems for cyclically oriented graphs and, finally, we show that deciding whether a cluster algebra is of finite type also belongs to this class. |
publishDate |
2015 |
dc.date.accessioned.fl_str_mv |
2015-11-03T14:30:02Z |
dc.date.issued.fl_str_mv |
2015-09-09 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
DIAS, E. S. Reconhecimento polinomial de álgebras cluster de tipo finito. 2015. 123 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015. |
dc.identifier.uri.fl_str_mv |
http://repositorio.bc.ufg.br/tede/handle/tede/4848 |
dc.identifier.dark.fl_str_mv |
ark:/38995/0013000005pcb |
identifier_str_mv |
DIAS, E. S. Reconhecimento polinomial de álgebras cluster de tipo finito. 2015. 123 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015. ark:/38995/0013000005pcb |
url |
http://repositorio.bc.ufg.br/tede/handle/tede/4848 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.program.fl_str_mv |
-3303550325223384799 |
dc.relation.confidence.fl_str_mv |
600 600 600 600 600 |
dc.relation.department.fl_str_mv |
-7712266734633644768 |
dc.relation.cnpq.fl_str_mv |
8930092515683771531 3671711205811204509 |
dc.relation.sponsorship.fl_str_mv |
-961409807440757778 |
dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.publisher.program.fl_str_mv |
Programa de Pós-graduação em Ciência da Computação (INF) |
dc.publisher.initials.fl_str_mv |
UFG |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
Instituto de Informática - INF (RG) |
publisher.none.fl_str_mv |
Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFG instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Repositório Institucional da UFG |
collection |
Repositório Institucional da UFG |
bitstream.url.fl_str_mv |
http://repositorio.bc.ufg.br/tede/bitstreams/eb02ed2b-275c-4e10-a250-b42eac34ff95/download http://repositorio.bc.ufg.br/tede/bitstreams/808b294f-1c1a-4b8f-a9c3-385bb4cb3b6d/download http://repositorio.bc.ufg.br/tede/bitstreams/fd2fb7d8-3f20-421d-9871-a41d095b2120/download http://repositorio.bc.ufg.br/tede/bitstreams/59d4358a-0802-4796-a765-243b4c5a3fd3/download http://repositorio.bc.ufg.br/tede/bitstreams/317b2d1c-1033-4fd6-ab1d-45f039217267/download http://repositorio.bc.ufg.br/tede/bitstreams/cbac7465-26cc-443b-8995-59a33f5ff02f/download http://repositorio.bc.ufg.br/tede/bitstreams/d2b44c54-d116-4e08-bc5c-36fe84897af3/download |
bitstream.checksum.fl_str_mv |
e288bc934158fa879639c403bb15ba54 bd3efa91386c1718a7f26a329fdcb468 4afdbb8c545fd630ea7db775da747b2f 683d9883b2ad62ac3b8bafc566b2e600 9da0b6dfac957114c6a7714714b86306 f542ba4f49532c8a1ea5833a8faf2b7d ccff5dcbef3f493b19c5d9a02ed3c7fe |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFG - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
tasesdissertacoes.bc@ufg.br |
_version_ |
1815172570173931520 |