Reconhecimento polinomial de álgebras cluster de tipo finito

Detalhes bibliográficos
Autor(a) principal: Dias, Elisângela SIlva
Data de Publicação: 2015
Tipo de documento: Tese
Idioma: por
Título da fonte: Repositório Institucional da UFG
dARK ID: ark:/38995/0013000005pcb
Texto Completo: http://repositorio.bc.ufg.br/tede/handle/tede/4848
Resumo: Cluster algebras form a class of commutative algebra, introduced at the beginning of the millennium by Fomin and Zelevinsky. They are defined constructively from a set of generating variables (cluster variables) grouped into overlapping subsets (clusters) of fixed cardinality. Since its inception, the theory of cluster algebras found applications in many areas of science, specially in mathematics. In this thesis, we study, with computational focus, the recognition of cluster algebras of finite type. In 2006, Barot, Geiss and Zelevinsky showed that a cluster algebra is of finite type whether the associated graph is cyclically oriented, i.e., all chordless cycles of the graph are cyclically oriented, and whether the skew-symmetrizable matrix associated has a positive quasi-Cartan companion. At first, we studied the two topics independently. Related to the first part of the criteria, we developed an algorithm that lists all chordless cycles (polynomial on the length of those cycles) and another that checks whether a graph is cyclically oriented and, if so, list all their chordless cycles (polynomial on the number of vertices). Related to the second part of the criteria, we developed some theoretical results and we also developed a polynomial algorithm that checks whether a quasi-Cartan companion matrix is positive. The latter algorithm is used to prove that the problem of deciding whether a skew-symmetrizable matrix has a positive quasi-Cartan companion for general graphs is in NP class. We conjecture that this problem is in NP-complete class.We show that the same problem belongs to the class of polynomial problems for cyclically oriented graphs and, finally, we show that deciding whether a cluster algebra is of finite type also belongs to this class.
id UFG-2_f8dd33c2d077191ccdfcc4d6cb18f626
oai_identifier_str oai:repositorio.bc.ufg.br:tede/4848
network_acronym_str UFG-2
network_name_str Repositório Institucional da UFG
repository_id_str
spelling Castonguay, Dianehttp://lattes.cnpq.br/4005898623592261Castonguay, DianeSchiffler, RalfDourado, Mitre CostaCarvalho, Marcelo Henrique deLongo, Humberto Joséhttp://lattes.cnpq.br/0138908377103572Dias, Elisângela SIlva2015-11-03T14:30:02Z2015-09-09DIAS, E. S. Reconhecimento polinomial de álgebras cluster de tipo finito. 2015. 123 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015.http://repositorio.bc.ufg.br/tede/handle/tede/4848ark:/38995/0013000005pcbCluster algebras form a class of commutative algebra, introduced at the beginning of the millennium by Fomin and Zelevinsky. They are defined constructively from a set of generating variables (cluster variables) grouped into overlapping subsets (clusters) of fixed cardinality. Since its inception, the theory of cluster algebras found applications in many areas of science, specially in mathematics. In this thesis, we study, with computational focus, the recognition of cluster algebras of finite type. In 2006, Barot, Geiss and Zelevinsky showed that a cluster algebra is of finite type whether the associated graph is cyclically oriented, i.e., all chordless cycles of the graph are cyclically oriented, and whether the skew-symmetrizable matrix associated has a positive quasi-Cartan companion. At first, we studied the two topics independently. Related to the first part of the criteria, we developed an algorithm that lists all chordless cycles (polynomial on the length of those cycles) and another that checks whether a graph is cyclically oriented and, if so, list all their chordless cycles (polynomial on the number of vertices). Related to the second part of the criteria, we developed some theoretical results and we also developed a polynomial algorithm that checks whether a quasi-Cartan companion matrix is positive. The latter algorithm is used to prove that the problem of deciding whether a skew-symmetrizable matrix has a positive quasi-Cartan companion for general graphs is in NP class. We conjecture that this problem is in NP-complete class.We show that the same problem belongs to the class of polynomial problems for cyclically oriented graphs and, finally, we show that deciding whether a cluster algebra is of finite type also belongs to this class.As álgebras cluster formam uma classe de álgebras comutativas introduzida no início do milênio por Fomin e Zelevinsky. Elas são definidas de forma construtiva a partir de um conjunto de variáveis geradoras (variáveis cluster) agrupadas em subconjuntos sobrepostos (clusters) de cardinalidade fixa. Desde a sua criação, a teoria das álgebras cluster encontrou aplicações em diversas áreas da matemática e afins. Nesta tese, estudamos, com foco computacional, o reconhecimento das álgebras cluster de tipo finito. Em 2006, Barot, Geiss e Zelevinsky mostraram que uma álgebra cluster é de tipo finito se o grafo associado é ciclicamente orientado, isto é, todos os ciclos sem corda do grafo são ciclicamente orientados, e se a matriz antissimetrizável associada possui uma companheira quase-Cartan positiva. Em um primeiro momento, estudamos os dois tópicos de forma independente. Em relação à primeira parte do critério, elaboramos um algoritmo que lista todos os ciclos sem corda (polinomial no tamanho destes ciclos) e outro que verifica se um grafo é ciclicamente orientado e, em caso positivo, lista todos os seus ciclos sem corda (polinomial na quantidade de vértices). Relacionado à segunda parte do critério, desenvolvemos alguns resultados teóricos e elaboramos um algoritmo polinomial que verifica se uma matriz companheira quase-Cartan é positiva. Este último algoritmo é utilizado para provar que o problema de decidir se uma matriz antissimetrizável tem uma companheira quase-Cartan positiva para grafos gerais está na classe NP. Conjecturamos que este problema pertence à classe NP-completa. Mostramos que o mesmo pertence à classe de problemas polinomiais para grafos ciclicamente orientados e, por fim, mostramos que decidir se uma álgebra cluster é de tipo finito também pertence a esta classe.Submitted by Cláudia Bueno (claudiamoura18@gmail.com) on 2015-10-29T19:17:43Z No. of bitstreams: 2 Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2015-11-03T14:30:02Z (GMT) No. of bitstreams: 2 Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5)Made available in DSpace on 2015-11-03T14:30:02Z (GMT). No. of bitstreams: 2 Tese - Elisângela Silva Dias - 2015.pdf: 1107380 bytes, checksum: e288bc934158fa879639c403bb15ba54 (MD5) license_rdf: 23148 bytes, checksum: 9da0b6dfac957114c6a7714714b86306 (MD5) Previous issue date: 2015-09-09Fundação de Amparo à Pesquisa do Estado de Goiás - FAPEGapplication/pdfhttp://repositorio.bc.ufg.br/tede/retrieve/22398/Tese%20-%20Elis%c3%a2ngela%20Silva%20Dias%20-%202015.pdf.jpgporUniversidade Federal de GoiásPrograma de Pós-graduação em Ciência da Computação (INF)UFGBrasilInstituto de Informática - INF (RG)http://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessÁlgebras clusterCiclos sem cordaGrafos ciclicamente orientáveisMatriz positivaCluster algebrasChordless cyclesCyclically orientable graphsPositive matrixCIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAOCIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAOReconhecimento polinomial de álgebras cluster de tipo finitoPolynomial recognition of cluster algebras of finite typeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesis-3303550325223384799600600600600600-771226673463364476889300925156837715313671711205811204509-961409807440757778reponame:Repositório Institucional da UFGinstname:Universidade Federal de Goiás (UFG)instacron:UFGORIGINALTese - Elisângela Silva Dias - 2015.pdfTese - Elisângela Silva Dias - 2015.pdfapplication/pdf1107380http://repositorio.bc.ufg.br/tede/bitstreams/eb02ed2b-275c-4e10-a250-b42eac34ff95/downloade288bc934158fa879639c403bb15ba54MD55LICENSElicense.txtlicense.txttext/plain; charset=utf-82165http://repositorio.bc.ufg.br/tede/bitstreams/808b294f-1c1a-4b8f-a9c3-385bb4cb3b6d/downloadbd3efa91386c1718a7f26a329fdcb468MD51CC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://repositorio.bc.ufg.br/tede/bitstreams/fd2fb7d8-3f20-421d-9871-a41d095b2120/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-821328http://repositorio.bc.ufg.br/tede/bitstreams/59d4358a-0802-4796-a765-243b4c5a3fd3/download683d9883b2ad62ac3b8bafc566b2e600MD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-823148http://repositorio.bc.ufg.br/tede/bitstreams/317b2d1c-1033-4fd6-ab1d-45f039217267/download9da0b6dfac957114c6a7714714b86306MD54TEXTTese - Elisângela Silva Dias - 2015.pdf.txtTese - Elisângela Silva Dias - 2015.pdf.txtExtracted Texttext/plain214420http://repositorio.bc.ufg.br/tede/bitstreams/cbac7465-26cc-443b-8995-59a33f5ff02f/downloadf542ba4f49532c8a1ea5833a8faf2b7dMD56THUMBNAILTese - Elisângela Silva Dias - 2015.pdf.jpgTese - Elisângela Silva Dias - 2015.pdf.jpgGenerated Thumbnailimage/jpeg3130http://repositorio.bc.ufg.br/tede/bitstreams/d2b44c54-d116-4e08-bc5c-36fe84897af3/downloadccff5dcbef3f493b19c5d9a02ed3c7feMD57tede/48482019-06-27 09:41:05.905http://creativecommons.org/licenses/by-nc-nd/4.0/Acesso Abertoopen.accessoai:repositorio.bc.ufg.br:tede/4848http://repositorio.bc.ufg.br/tedeRepositório InstitucionalPUBhttp://repositorio.bc.ufg.br/oai/requesttasesdissertacoes.bc@ufg.bropendoar:2019-06-27T12:41:05Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)falseTk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSw5NQUklBIExJQ0VOw4dBCkVzdGEgbGljZW7Dp2EgZGUgZXhlbXBsbyDDqSBmb3JuZWNpZGEgYXBlbmFzIHBhcmEgZmlucyBpbmZvcm1hdGl2b3MuCgpMSUNFTsOHQSBERSBESVNUUklCVUnDh8ODTyBOw4NPLUVYQ0xVU0lWQQoKQ29tIGEgYXByZXNlbnRhw6fDo28gZGVzdGEgbGljZW7Dp2EsIHZvY8OqIChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgClhYWCAoU2lnbGEgZGEgVW5pdmVyc2lkYWRlKSBvIGRpcmVpdG8gbsOjby1leGNsdXNpdm8gZGUgcmVwcm9kdXppciwgIHRyYWR1emlyIChjb25mb3JtZSBkZWZpbmlkbyBhYmFpeG8pLCBlL291IApkaXN0cmlidWlyIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAoaW5jbHVpbmRvIG8gcmVzdW1vKSBwb3IgdG9kbyBvIG11bmRvIG5vIGZvcm1hdG8gaW1wcmVzc28gZSBlbGV0csO0bmljbyBlIAplbSBxdWFscXVlciBtZWlvLCBpbmNsdWluZG8gb3MgZm9ybWF0b3Mgw6F1ZGlvIG91IHbDrWRlby4KClZvY8OqIGNvbmNvcmRhIHF1ZSBhIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBwb2RlLCBzZW0gYWx0ZXJhciBvIGNvbnRlw7pkbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIApwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byBwYXJhIGZpbnMgZGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIHRhbWLDqW0gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBhIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSAKb3MgZGlyZWl0b3MgYXByZXNlbnRhZG9zIG5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIAppZGVudGlmaWNhZG8gZSByZWNvbmhlY2lkbyBubyB0ZXh0byBvdSBubyBjb250ZcO6ZG8gZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFRFU0UgT1UgRElTU0VSVEHDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSAKQVBPSU8gREUgVU1BIEFHw4pOQ0lBIERFIEZPTUVOVE8gT1UgT1VUUk8gT1JHQU5JU01PIFFVRSBOw4NPIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyAKVEFNQsOJTSBBUyBERU1BSVMgT0JSSUdBw4fDlUVTIEVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpBIFNpZ2xhIGRlIFVuaXZlcnNpZGFkZSBzZSBjb21wcm9tZXRlIGEgaWRlbnRpZmljYXIgY2xhcmFtZW50ZSBvIHNldSBub21lIChzKSBvdSBvKHMpIG5vbWUocykgZG8ocykgCmRldGVudG9yKGVzKSBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgZGEgdGVzZSBvdSBkaXNzZXJ0YcOnw6NvLCBlIG7Do28gZmFyw6EgcXVhbHF1ZXIgYWx0ZXJhw6fDo28sIGFsw6ltIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2Vuw6dhLgo=
dc.title.por.fl_str_mv Reconhecimento polinomial de álgebras cluster de tipo finito
dc.title.alternative.eng.fl_str_mv Polynomial recognition of cluster algebras of finite type
title Reconhecimento polinomial de álgebras cluster de tipo finito
spellingShingle Reconhecimento polinomial de álgebras cluster de tipo finito
Dias, Elisângela SIlva
Álgebras cluster
Ciclos sem corda
Grafos ciclicamente orientáveis
Matriz positiva
Cluster algebras
Chordless cycles
Cyclically orientable graphs
Positive matrix
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
title_short Reconhecimento polinomial de álgebras cluster de tipo finito
title_full Reconhecimento polinomial de álgebras cluster de tipo finito
title_fullStr Reconhecimento polinomial de álgebras cluster de tipo finito
title_full_unstemmed Reconhecimento polinomial de álgebras cluster de tipo finito
title_sort Reconhecimento polinomial de álgebras cluster de tipo finito
author Dias, Elisângela SIlva
author_facet Dias, Elisângela SIlva
author_role author
dc.contributor.advisor1.fl_str_mv Castonguay, Diane
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/4005898623592261
dc.contributor.referee1.fl_str_mv Castonguay, Diane
dc.contributor.referee2.fl_str_mv Schiffler, Ralf
dc.contributor.referee3.fl_str_mv Dourado, Mitre Costa
dc.contributor.referee4.fl_str_mv Carvalho, Marcelo Henrique de
dc.contributor.referee5.fl_str_mv Longo, Humberto José
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/0138908377103572
dc.contributor.author.fl_str_mv Dias, Elisângela SIlva
contributor_str_mv Castonguay, Diane
Castonguay, Diane
Schiffler, Ralf
Dourado, Mitre Costa
Carvalho, Marcelo Henrique de
Longo, Humberto José
dc.subject.por.fl_str_mv Álgebras cluster
Ciclos sem corda
Grafos ciclicamente orientáveis
Matriz positiva
topic Álgebras cluster
Ciclos sem corda
Grafos ciclicamente orientáveis
Matriz positiva
Cluster algebras
Chordless cycles
Cyclically orientable graphs
Positive matrix
CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
dc.subject.eng.fl_str_mv Cluster algebras
Chordless cycles
Cyclically orientable graphs
Positive matrix
dc.subject.cnpq.fl_str_mv CIENCIA DA COMPUTACAO::SISTEMAS DE COMPUTACAO
CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO
description Cluster algebras form a class of commutative algebra, introduced at the beginning of the millennium by Fomin and Zelevinsky. They are defined constructively from a set of generating variables (cluster variables) grouped into overlapping subsets (clusters) of fixed cardinality. Since its inception, the theory of cluster algebras found applications in many areas of science, specially in mathematics. In this thesis, we study, with computational focus, the recognition of cluster algebras of finite type. In 2006, Barot, Geiss and Zelevinsky showed that a cluster algebra is of finite type whether the associated graph is cyclically oriented, i.e., all chordless cycles of the graph are cyclically oriented, and whether the skew-symmetrizable matrix associated has a positive quasi-Cartan companion. At first, we studied the two topics independently. Related to the first part of the criteria, we developed an algorithm that lists all chordless cycles (polynomial on the length of those cycles) and another that checks whether a graph is cyclically oriented and, if so, list all their chordless cycles (polynomial on the number of vertices). Related to the second part of the criteria, we developed some theoretical results and we also developed a polynomial algorithm that checks whether a quasi-Cartan companion matrix is positive. The latter algorithm is used to prove that the problem of deciding whether a skew-symmetrizable matrix has a positive quasi-Cartan companion for general graphs is in NP class. We conjecture that this problem is in NP-complete class.We show that the same problem belongs to the class of polynomial problems for cyclically oriented graphs and, finally, we show that deciding whether a cluster algebra is of finite type also belongs to this class.
publishDate 2015
dc.date.accessioned.fl_str_mv 2015-11-03T14:30:02Z
dc.date.issued.fl_str_mv 2015-09-09
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv DIAS, E. S. Reconhecimento polinomial de álgebras cluster de tipo finito. 2015. 123 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015.
dc.identifier.uri.fl_str_mv http://repositorio.bc.ufg.br/tede/handle/tede/4848
dc.identifier.dark.fl_str_mv ark:/38995/0013000005pcb
identifier_str_mv DIAS, E. S. Reconhecimento polinomial de álgebras cluster de tipo finito. 2015. 123 f. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Goiás, Goiânia, 2015.
ark:/38995/0013000005pcb
url http://repositorio.bc.ufg.br/tede/handle/tede/4848
dc.language.iso.fl_str_mv por
language por
dc.relation.program.fl_str_mv -3303550325223384799
dc.relation.confidence.fl_str_mv 600
600
600
600
600
dc.relation.department.fl_str_mv -7712266734633644768
dc.relation.cnpq.fl_str_mv 8930092515683771531
3671711205811204509
dc.relation.sponsorship.fl_str_mv -961409807440757778
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Goiás
dc.publisher.program.fl_str_mv Programa de Pós-graduação em Ciência da Computação (INF)
dc.publisher.initials.fl_str_mv UFG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Informática - INF (RG)
publisher.none.fl_str_mv Universidade Federal de Goiás
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFG
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Repositório Institucional da UFG
collection Repositório Institucional da UFG
bitstream.url.fl_str_mv http://repositorio.bc.ufg.br/tede/bitstreams/eb02ed2b-275c-4e10-a250-b42eac34ff95/download
http://repositorio.bc.ufg.br/tede/bitstreams/808b294f-1c1a-4b8f-a9c3-385bb4cb3b6d/download
http://repositorio.bc.ufg.br/tede/bitstreams/fd2fb7d8-3f20-421d-9871-a41d095b2120/download
http://repositorio.bc.ufg.br/tede/bitstreams/59d4358a-0802-4796-a765-243b4c5a3fd3/download
http://repositorio.bc.ufg.br/tede/bitstreams/317b2d1c-1033-4fd6-ab1d-45f039217267/download
http://repositorio.bc.ufg.br/tede/bitstreams/cbac7465-26cc-443b-8995-59a33f5ff02f/download
http://repositorio.bc.ufg.br/tede/bitstreams/d2b44c54-d116-4e08-bc5c-36fe84897af3/download
bitstream.checksum.fl_str_mv e288bc934158fa879639c403bb15ba54
bd3efa91386c1718a7f26a329fdcb468
4afdbb8c545fd630ea7db775da747b2f
683d9883b2ad62ac3b8bafc566b2e600
9da0b6dfac957114c6a7714714b86306
f542ba4f49532c8a1ea5833a8faf2b7d
ccff5dcbef3f493b19c5d9a02ed3c7fe
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFG - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv tasesdissertacoes.bc@ufg.br
_version_ 1815172570173931520