Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks
Autor(a) principal: | |
---|---|
Data de Publicação: | 2021 |
Outros Autores: | , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa Agropecuária Tropical (Online) |
Texto Completo: | https://revistas.ufg.br/pat/article/view/66008 |
Resumo: | Prediction models may contribute to data analysis and decision-making in the management of a crop. This study aimed to evaluate the feasibility of predicting the yield of ‘Prata-Anã’ and ‘BRS Platina’ banana plants by means of artificial neural networks, as well as to determine the most important morphological descriptors for this purpose. The following characteristics were measured: plant height; perimeter of the pseudostem at the ground level, at 30 cm and 100 cm; number of live leaves at harvest; stalk mass, length and diameter; number of hands and fruits; bunches and hands masses; hands average mass; and ratio between the stalk and bunch masses. The data were submitted to artificial neural networks analysis using the R software. The best adjustments were obtained with two and three neurons at the intermediate layer, respectively for ‘Prata-Anã’ and ‘BRS Platina’. These models presented the lowest mean square errors, which correspond to the higher proximity between the predicted and the real data, and, therefore, a higher efficiency of the networks in the yield prediction. By the coefficient of determination, the best adjustments were found for ‘Prata-Anã’ (R² = 0.99 for all the network compositions), while, for ‘BRS Platina’, the data adjustment enabled an R² with values between 0.97 and 1.00, approximately. Yield predictions for ‘Prata-Anã’ and ‘BRS Platina’ were obtained with high efficiency by using artificial neural networks. KEYWORDS: Musa spp., mathematical models, rural planning. |
id |
UFG-6_29eb5949aca25bd85b7cbad6f5acc168 |
---|---|
oai_identifier_str |
oai:ojs.revistas.ufg.br:article/66008 |
network_acronym_str |
UFG-6 |
network_name_str |
Pesquisa Agropecuária Tropical (Online) |
repository_id_str |
|
spelling |
Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networksPredição da produtividade de bananeiras ‘Prata-Anã’ e ‘BRS Platina’ por redes neurais artificiaisPrediction models may contribute to data analysis and decision-making in the management of a crop. This study aimed to evaluate the feasibility of predicting the yield of ‘Prata-Anã’ and ‘BRS Platina’ banana plants by means of artificial neural networks, as well as to determine the most important morphological descriptors for this purpose. The following characteristics were measured: plant height; perimeter of the pseudostem at the ground level, at 30 cm and 100 cm; number of live leaves at harvest; stalk mass, length and diameter; number of hands and fruits; bunches and hands masses; hands average mass; and ratio between the stalk and bunch masses. The data were submitted to artificial neural networks analysis using the R software. The best adjustments were obtained with two and three neurons at the intermediate layer, respectively for ‘Prata-Anã’ and ‘BRS Platina’. These models presented the lowest mean square errors, which correspond to the higher proximity between the predicted and the real data, and, therefore, a higher efficiency of the networks in the yield prediction. By the coefficient of determination, the best adjustments were found for ‘Prata-Anã’ (R² = 0.99 for all the network compositions), while, for ‘BRS Platina’, the data adjustment enabled an R² with values between 0.97 and 1.00, approximately. Yield predictions for ‘Prata-Anã’ and ‘BRS Platina’ were obtained with high efficiency by using artificial neural networks. KEYWORDS: Musa spp., mathematical models, rural planning.Modelos de predição podem contribuir para a análise de dados e tomada de decisões no manejo de uma cultura. Objetivou-se avaliar a viabilidade da predição de produtividade de bananeiras ‘Prata-Anã’ e ‘BRS Platina’, por meio de redes neurais artificiais, bem como determinar os descritores morfológicos mais importantes para este fim. Foram mensurados a altura de planta; perímetro do pseudocaule ao nível do solo, a 30 e 100 cm de altura; número de folhas vivas na colheita; massa, comprimento e diâmetro do engaço; número de pencas e de frutos; massa do cacho e das pencas; massa média das pencas; e relação entre a massa do engaço e do cacho. Os dados foram submetidos a análise por redes neurais artificiais, utilizando-se o software R. Os melhores ajustes foram obtidos com dois e três neurônios na camada intermediária, respectivamente, para ‘Prata-Anã’ e ‘BRS Platina’. Esses modelos apresentaram os menores erros quadráticos médios, o que corresponde a maior proximidade entre os dados preditos e os reais, e, por conseguinte, maior eficiência das redes na predição da produtividade. Pelo coeficiente de determinação, verificaram-se os melhores ajustes para ‘Prata-Anã’ (R² = 0,99 para todas as composições de rede), enquanto, para ‘BRS Platina’, a adequação dos dados possibilitou R² com valores entre 0,97 e 1,00, aproximadamente. Previsões de produtividade para ‘Prata-Anã’ e ‘BRS Platina’ foram obtidas com alta eficiência por meio de redes neurais artificiais. PALAVRAS-CHAVE: Musa spp., modelos matemáticos, planejamento rural.Escola de Agronomia - Universidade Federal de Goiás2021-04-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado por paresapplication/pdfhttps://revistas.ufg.br/pat/article/view/66008Pesquisa Agropecuária Tropical [Agricultural Research in the Tropics]; Vol. 51 (2021); e66008Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics); Vol. 51 (2021); e66008Pesquisa Agropecuária Tropical; v. 51 (2021); e660081983-4063reponame:Pesquisa Agropecuária Tropical (Online)instname:Universidade Federal de Goiás (UFG)instacron:UFGenghttps://revistas.ufg.br/pat/article/view/66008/36505Copyright (c) 2021 Pesquisa Agropecuária Tropicalinfo:eu-repo/semantics/openAccessGuimarães, Bruno Vinícius CastroDonato, Sérgio Luiz Rodrigues Aspiazú, IgnacioAzevedo, Alcinei Mistico 2021-04-12T18:40:27Zoai:ojs.revistas.ufg.br:article/66008Revistahttps://revistas.ufg.br/patPUBhttps://revistas.ufg.br/pat/oaiaseleguini.pat@gmail.com||mgoes@agro.ufg.br1983-40631517-6398opendoar:2024-05-21T19:56:30.042356Pesquisa Agropecuária Tropical (Online) - Universidade Federal de Goiás (UFG)true |
dc.title.none.fl_str_mv |
Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks Predição da produtividade de bananeiras ‘Prata-Anã’ e ‘BRS Platina’ por redes neurais artificiais |
title |
Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks |
spellingShingle |
Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks Guimarães, Bruno Vinícius Castro |
title_short |
Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks |
title_full |
Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks |
title_fullStr |
Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks |
title_full_unstemmed |
Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks |
title_sort |
Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks |
author |
Guimarães, Bruno Vinícius Castro |
author_facet |
Guimarães, Bruno Vinícius Castro Donato, Sérgio Luiz Rodrigues Aspiazú, Ignacio Azevedo, Alcinei Mistico |
author_role |
author |
author2 |
Donato, Sérgio Luiz Rodrigues Aspiazú, Ignacio Azevedo, Alcinei Mistico |
author2_role |
author author author |
dc.contributor.author.fl_str_mv |
Guimarães, Bruno Vinícius Castro Donato, Sérgio Luiz Rodrigues Aspiazú, Ignacio Azevedo, Alcinei Mistico |
description |
Prediction models may contribute to data analysis and decision-making in the management of a crop. This study aimed to evaluate the feasibility of predicting the yield of ‘Prata-Anã’ and ‘BRS Platina’ banana plants by means of artificial neural networks, as well as to determine the most important morphological descriptors for this purpose. The following characteristics were measured: plant height; perimeter of the pseudostem at the ground level, at 30 cm and 100 cm; number of live leaves at harvest; stalk mass, length and diameter; number of hands and fruits; bunches and hands masses; hands average mass; and ratio between the stalk and bunch masses. The data were submitted to artificial neural networks analysis using the R software. The best adjustments were obtained with two and three neurons at the intermediate layer, respectively for ‘Prata-Anã’ and ‘BRS Platina’. These models presented the lowest mean square errors, which correspond to the higher proximity between the predicted and the real data, and, therefore, a higher efficiency of the networks in the yield prediction. By the coefficient of determination, the best adjustments were found for ‘Prata-Anã’ (R² = 0.99 for all the network compositions), while, for ‘BRS Platina’, the data adjustment enabled an R² with values between 0.97 and 1.00, approximately. Yield predictions for ‘Prata-Anã’ and ‘BRS Platina’ were obtained with high efficiency by using artificial neural networks. KEYWORDS: Musa spp., mathematical models, rural planning. |
publishDate |
2021 |
dc.date.none.fl_str_mv |
2021-04-12 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliado por pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufg.br/pat/article/view/66008 |
url |
https://revistas.ufg.br/pat/article/view/66008 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.ufg.br/pat/article/view/66008/36505 |
dc.rights.driver.fl_str_mv |
Copyright (c) 2021 Pesquisa Agropecuária Tropical info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Copyright (c) 2021 Pesquisa Agropecuária Tropical |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Escola de Agronomia - Universidade Federal de Goiás |
publisher.none.fl_str_mv |
Escola de Agronomia - Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
Pesquisa Agropecuária Tropical [Agricultural Research in the Tropics]; Vol. 51 (2021); e66008 Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics); Vol. 51 (2021); e66008 Pesquisa Agropecuária Tropical; v. 51 (2021); e66008 1983-4063 reponame:Pesquisa Agropecuária Tropical (Online) instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Pesquisa Agropecuária Tropical (Online) |
collection |
Pesquisa Agropecuária Tropical (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Tropical (Online) - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
aseleguini.pat@gmail.com||mgoes@agro.ufg.br |
_version_ |
1799874820991614976 |