Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks

Detalhes bibliográficos
Autor(a) principal: Guimarães, Bruno Vinícius Castro
Data de Publicação: 2021
Outros Autores: Donato, Sérgio Luiz Rodrigues, Aspiazú, Ignacio, Azevedo, Alcinei Mistico
Tipo de documento: Artigo
Idioma: eng
Título da fonte: Pesquisa Agropecuária Tropical (Online)
Texto Completo: https://revistas.ufg.br/pat/article/view/66008
Resumo: Prediction models may contribute to data analysis and decision-making in the management of a crop. This study aimed to evaluate the feasibility of predicting the yield of ‘Prata-Anã’ and ‘BRS Platina’ banana plants by means of artificial neural networks, as well as to determine the most important morphological descriptors for this purpose. The following characteristics were measured: plant height; perimeter of the pseudostem at the ground level, at 30 cm and 100 cm; number of live leaves at harvest; stalk mass, length and diameter; number of hands and fruits; bunches and hands masses; hands average mass; and ratio between the stalk and bunch masses. The data were submitted to artificial neural networks analysis using the R software. The best adjustments were obtained with two and three neurons at the intermediate layer, respectively for ‘Prata-Anã’ and ‘BRS Platina’. These models presented the lowest mean square errors, which correspond to the higher proximity between the predicted and the real data, and, therefore, a higher efficiency of the networks in the yield prediction. By the coefficient of determination, the best adjustments were found for ‘Prata-Anã’ (R² = 0.99 for all the network compositions), while, for ‘BRS Platina’, the data adjustment enabled an R² with values between 0.97 and 1.00, approximately. Yield predictions for ‘Prata-Anã’ and ‘BRS Platina’ were obtained with high efficiency by using artificial neural networks. KEYWORDS: Musa spp., mathematical models, rural planning.
id UFG-6_29eb5949aca25bd85b7cbad6f5acc168
oai_identifier_str oai:ojs.revistas.ufg.br:article/66008
network_acronym_str UFG-6
network_name_str Pesquisa Agropecuária Tropical (Online)
repository_id_str
spelling Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networksPredição da produtividade de bananeiras ‘Prata-Anã’ e ‘BRS Platina’ por redes neurais artificiaisPrediction models may contribute to data analysis and decision-making in the management of a crop. This study aimed to evaluate the feasibility of predicting the yield of ‘Prata-Anã’ and ‘BRS Platina’ banana plants by means of artificial neural networks, as well as to determine the most important morphological descriptors for this purpose. The following characteristics were measured: plant height; perimeter of the pseudostem at the ground level, at 30 cm and 100 cm; number of live leaves at harvest; stalk mass, length and diameter; number of hands and fruits; bunches and hands masses; hands average mass; and ratio between the stalk and bunch masses. The data were submitted to artificial neural networks analysis using the R software. The best adjustments were obtained with two and three neurons at the intermediate layer, respectively for ‘Prata-Anã’ and ‘BRS Platina’. These models presented the lowest mean square errors, which correspond to the higher proximity between the predicted and the real data, and, therefore, a higher efficiency of the networks in the yield prediction. By the coefficient of determination, the best adjustments were found for ‘Prata-Anã’ (R² = 0.99 for all the network compositions), while, for ‘BRS Platina’, the data adjustment enabled an R² with values between 0.97 and 1.00, approximately. Yield predictions for ‘Prata-Anã’ and ‘BRS Platina’ were obtained with high efficiency by using artificial neural networks. KEYWORDS: Musa spp., mathematical models, rural planning.Modelos de predição podem contribuir para a análise de dados e tomada de decisões no manejo de uma cultura. Objetivou-se avaliar a viabilidade da predição de produtividade de bananeiras ‘Prata-Anã’ e ‘BRS Platina’, por meio de redes neurais artificiais, bem como determinar os descritores morfológicos mais importantes para este fim. Foram mensurados a altura de planta; perímetro do pseudocaule ao nível do solo, a 30 e 100 cm de altura; número de folhas vivas na colheita; massa, comprimento e diâmetro do engaço; número de pencas e de frutos; massa do cacho e das pencas; massa média das pencas; e relação entre a massa do engaço e do cacho. Os dados foram submetidos a análise por redes neurais artificiais, utilizando-se o software R. Os melhores ajustes foram obtidos com dois e três neurônios na camada intermediária, respectivamente, para ‘Prata-Anã’ e ‘BRS Platina’. Esses modelos apresentaram os menores erros quadráticos médios, o que corresponde a maior proximidade entre os dados preditos e os reais, e, por conseguinte, maior eficiência das redes na predição da produtividade. Pelo coeficiente de determinação, verificaram-se os melhores ajustes para ‘Prata-Anã’ (R² = 0,99 para todas as composições de rede), enquanto, para ‘BRS Platina’, a adequação dos dados possibilitou R² com valores entre 0,97 e 1,00, aproximadamente. Previsões de produtividade para ‘Prata-Anã’ e ‘BRS Platina’ foram obtidas com alta eficiência por meio de redes neurais artificiais. PALAVRAS-CHAVE: Musa spp., modelos matemáticos, planejamento rural.Escola de Agronomia - Universidade Federal de Goiás2021-04-12info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado por paresapplication/pdfhttps://revistas.ufg.br/pat/article/view/66008Pesquisa Agropecuária Tropical [Agricultural Research in the Tropics]; Vol. 51 (2021); e66008Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics); Vol. 51 (2021); e66008Pesquisa Agropecuária Tropical; v. 51 (2021); e660081983-4063reponame:Pesquisa Agropecuária Tropical (Online)instname:Universidade Federal de Goiás (UFG)instacron:UFGenghttps://revistas.ufg.br/pat/article/view/66008/36505Copyright (c) 2021 Pesquisa Agropecuária Tropicalinfo:eu-repo/semantics/openAccessGuimarães, Bruno Vinícius CastroDonato, Sérgio Luiz Rodrigues Aspiazú, IgnacioAzevedo, Alcinei Mistico 2021-04-12T18:40:27Zoai:ojs.revistas.ufg.br:article/66008Revistahttps://revistas.ufg.br/patPUBhttps://revistas.ufg.br/pat/oaiaseleguini.pat@gmail.com||mgoes@agro.ufg.br1983-40631517-6398opendoar:2024-05-21T19:56:30.042356Pesquisa Agropecuária Tropical (Online) - Universidade Federal de Goiás (UFG)true
dc.title.none.fl_str_mv Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks
Predição da produtividade de bananeiras ‘Prata-Anã’ e ‘BRS Platina’ por redes neurais artificiais
title Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks
spellingShingle Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks
Guimarães, Bruno Vinícius Castro
title_short Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks
title_full Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks
title_fullStr Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks
title_full_unstemmed Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks
title_sort Yield prediction of ‘Prata Anã’ and ‘BRS Platina’ banana plants by artificial neural networks
author Guimarães, Bruno Vinícius Castro
author_facet Guimarães, Bruno Vinícius Castro
Donato, Sérgio Luiz Rodrigues
Aspiazú, Ignacio
Azevedo, Alcinei Mistico
author_role author
author2 Donato, Sérgio Luiz Rodrigues
Aspiazú, Ignacio
Azevedo, Alcinei Mistico
author2_role author
author
author
dc.contributor.author.fl_str_mv Guimarães, Bruno Vinícius Castro
Donato, Sérgio Luiz Rodrigues
Aspiazú, Ignacio
Azevedo, Alcinei Mistico
description Prediction models may contribute to data analysis and decision-making in the management of a crop. This study aimed to evaluate the feasibility of predicting the yield of ‘Prata-Anã’ and ‘BRS Platina’ banana plants by means of artificial neural networks, as well as to determine the most important morphological descriptors for this purpose. The following characteristics were measured: plant height; perimeter of the pseudostem at the ground level, at 30 cm and 100 cm; number of live leaves at harvest; stalk mass, length and diameter; number of hands and fruits; bunches and hands masses; hands average mass; and ratio between the stalk and bunch masses. The data were submitted to artificial neural networks analysis using the R software. The best adjustments were obtained with two and three neurons at the intermediate layer, respectively for ‘Prata-Anã’ and ‘BRS Platina’. These models presented the lowest mean square errors, which correspond to the higher proximity between the predicted and the real data, and, therefore, a higher efficiency of the networks in the yield prediction. By the coefficient of determination, the best adjustments were found for ‘Prata-Anã’ (R² = 0.99 for all the network compositions), while, for ‘BRS Platina’, the data adjustment enabled an R² with values between 0.97 and 1.00, approximately. Yield predictions for ‘Prata-Anã’ and ‘BRS Platina’ were obtained with high efficiency by using artificial neural networks. KEYWORDS: Musa spp., mathematical models, rural planning.
publishDate 2021
dc.date.none.fl_str_mv 2021-04-12
dc.type.driver.fl_str_mv info:eu-repo/semantics/article
info:eu-repo/semantics/publishedVersion
Avaliado por pares
format article
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://revistas.ufg.br/pat/article/view/66008
url https://revistas.ufg.br/pat/article/view/66008
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv https://revistas.ufg.br/pat/article/view/66008/36505
dc.rights.driver.fl_str_mv Copyright (c) 2021 Pesquisa Agropecuária Tropical
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Copyright (c) 2021 Pesquisa Agropecuária Tropical
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Escola de Agronomia - Universidade Federal de Goiás
publisher.none.fl_str_mv Escola de Agronomia - Universidade Federal de Goiás
dc.source.none.fl_str_mv Pesquisa Agropecuária Tropical [Agricultural Research in the Tropics]; Vol. 51 (2021); e66008
Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics); Vol. 51 (2021); e66008
Pesquisa Agropecuária Tropical; v. 51 (2021); e66008
1983-4063
reponame:Pesquisa Agropecuária Tropical (Online)
instname:Universidade Federal de Goiás (UFG)
instacron:UFG
instname_str Universidade Federal de Goiás (UFG)
instacron_str UFG
institution UFG
reponame_str Pesquisa Agropecuária Tropical (Online)
collection Pesquisa Agropecuária Tropical (Online)
repository.name.fl_str_mv Pesquisa Agropecuária Tropical (Online) - Universidade Federal de Goiás (UFG)
repository.mail.fl_str_mv aseleguini.pat@gmail.com||mgoes@agro.ufg.br
_version_ 1799874820991614976