Agrometeorological analysis of the soybean potentiality in an Amazonian environment
Autor(a) principal: | |
---|---|
Data de Publicação: | 2019 |
Outros Autores: | , , , |
Tipo de documento: | Artigo |
Idioma: | eng |
Título da fonte: | Pesquisa Agropecuária Tropical (Online) |
Texto Completo: | https://revistas.ufg.br/pat/article/view/54595 |
Resumo: | The use of crop models that integrate soil, climate, cultivar and management information may broaden the understanding of the interactions between soybean cropping system and local climate variability. This study aimed to analyze the potentiality of soybean in an Amazonian production environment, as well as to determine an optimal sowing window via agrometeorological modeling. A crop model was programmed to simulate the soybean yield for 18 sowing dates, obtained along 33 years of climatic data, under attainable and potential conditions. The simulated potential of soybean yield ranged from 3,785 kg ha-1 to 5,114 kg ha-1, owing to the local energy availability, whereas the average attainable yield ranged from 557 kg ha-1 to 4,700 kg ha-1, mainly because of the soil moisture conditions. The smallest difference between the potential and attainable yields was observed in the sowing dates from 01-Jan to 15-Feb. For this window, the probability of obtaining yields above 3,500 kg ha-1 was higher than 90 %. KEYWORDS: Glycine max, CROPGRO-Soybean, optimum sowing window. |
id |
UFG-6_b0c3acbf6ec0b5596b87cb9a30975e58 |
---|---|
oai_identifier_str |
oai:ojs.revistas.ufg.br:article/54595 |
network_acronym_str |
UFG-6 |
network_name_str |
Pesquisa Agropecuária Tropical (Online) |
repository_id_str |
|
spelling |
Agrometeorological analysis of the soybean potentiality in an Amazonian environmentAnálise agrometeorológica da potencialidade da soja em ambiente amazônicoThe use of crop models that integrate soil, climate, cultivar and management information may broaden the understanding of the interactions between soybean cropping system and local climate variability. This study aimed to analyze the potentiality of soybean in an Amazonian production environment, as well as to determine an optimal sowing window via agrometeorological modeling. A crop model was programmed to simulate the soybean yield for 18 sowing dates, obtained along 33 years of climatic data, under attainable and potential conditions. The simulated potential of soybean yield ranged from 3,785 kg ha-1 to 5,114 kg ha-1, owing to the local energy availability, whereas the average attainable yield ranged from 557 kg ha-1 to 4,700 kg ha-1, mainly because of the soil moisture conditions. The smallest difference between the potential and attainable yields was observed in the sowing dates from 01-Jan to 15-Feb. For this window, the probability of obtaining yields above 3,500 kg ha-1 was higher than 90 %. KEYWORDS: Glycine max, CROPGRO-Soybean, optimum sowing window.O uso de modelos de culturas que integram informações de solo, clima, cultivar e práticas de manejo pode ampliar a compreensão das interações entre o sistema de cultivo da soja e a variabilidade climática local. Objetivou-se analisar a potencialidade da soja em ambiente de produção amazônico, bem como determinar uma janela ótima de semeadura, por meio de modelagem agrometeorológica. Um modelo de cultura foi utilizado para simular o rendimento da soja para 18 datas de semeadura, ao longo de uma série histórica de 33 anos de dados meteorológicos, sob condições potencial e atingível. O rendimento potencial da soja variou de 3.785 kg ha-1 a 5.114 kg ha-1, devido à disponibilidade energética local. Por outro lado, o rendimento médio atingível variou de 557 kg ha-1 a 4.700 kg ha-1, devido, principalmente, às condições de umidade do solo. A menor diferença entre o rendimento potencial e o atingível foi observada entre as datas de semeadura 01 de janeiro e 15 de fevereiro, sendo que, nesta janela, a probabilidade de se obterem rendimentos acima de 3.500 kg ha-1 foi superior a 90 %. PALAVRAS-CHAVE: Glycine max, CROPGRO-Soybean, janela ótima de semeadura.Escola de Agronomia - Universidade Federal de Goiás2019-06-03info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionAvaliado por paresapplication/pdfhttps://revistas.ufg.br/pat/article/view/54595Pesquisa Agropecuária Tropical [Agricultural Research in the Tropics]; Vol. 49 (2019); e54595Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics); Vol. 49 (2019); e54595Pesquisa Agropecuária Tropical; v. 49 (2019); e545951983-4063reponame:Pesquisa Agropecuária Tropical (Online)instname:Universidade Federal de Goiás (UFG)instacron:UFGenghttps://revistas.ufg.br/pat/article/view/54595/33238Lima, Marcus José Alves dede Oliveira, Evandro ChavesSampaio, Leila SobralFraisse, Clyde Williamde Souza, Paulo Jorge de Oliveira Ponteinfo:eu-repo/semantics/openAccess2020-03-02T13:59:37Zoai:ojs.revistas.ufg.br:article/54595Revistahttps://revistas.ufg.br/patPUBhttps://revistas.ufg.br/pat/oaiaseleguini.pat@gmail.com||mgoes@agro.ufg.br1983-40631517-6398opendoar:2024-05-21T19:56:24.243536Pesquisa Agropecuária Tropical (Online) - Universidade Federal de Goiás (UFG)true |
dc.title.none.fl_str_mv |
Agrometeorological analysis of the soybean potentiality in an Amazonian environment Análise agrometeorológica da potencialidade da soja em ambiente amazônico |
title |
Agrometeorological analysis of the soybean potentiality in an Amazonian environment |
spellingShingle |
Agrometeorological analysis of the soybean potentiality in an Amazonian environment Lima, Marcus José Alves de |
title_short |
Agrometeorological analysis of the soybean potentiality in an Amazonian environment |
title_full |
Agrometeorological analysis of the soybean potentiality in an Amazonian environment |
title_fullStr |
Agrometeorological analysis of the soybean potentiality in an Amazonian environment |
title_full_unstemmed |
Agrometeorological analysis of the soybean potentiality in an Amazonian environment |
title_sort |
Agrometeorological analysis of the soybean potentiality in an Amazonian environment |
author |
Lima, Marcus José Alves de |
author_facet |
Lima, Marcus José Alves de de Oliveira, Evandro Chaves Sampaio, Leila Sobral Fraisse, Clyde William de Souza, Paulo Jorge de Oliveira Ponte |
author_role |
author |
author2 |
de Oliveira, Evandro Chaves Sampaio, Leila Sobral Fraisse, Clyde William de Souza, Paulo Jorge de Oliveira Ponte |
author2_role |
author author author author |
dc.contributor.author.fl_str_mv |
Lima, Marcus José Alves de de Oliveira, Evandro Chaves Sampaio, Leila Sobral Fraisse, Clyde William de Souza, Paulo Jorge de Oliveira Ponte |
description |
The use of crop models that integrate soil, climate, cultivar and management information may broaden the understanding of the interactions between soybean cropping system and local climate variability. This study aimed to analyze the potentiality of soybean in an Amazonian production environment, as well as to determine an optimal sowing window via agrometeorological modeling. A crop model was programmed to simulate the soybean yield for 18 sowing dates, obtained along 33 years of climatic data, under attainable and potential conditions. The simulated potential of soybean yield ranged from 3,785 kg ha-1 to 5,114 kg ha-1, owing to the local energy availability, whereas the average attainable yield ranged from 557 kg ha-1 to 4,700 kg ha-1, mainly because of the soil moisture conditions. The smallest difference between the potential and attainable yields was observed in the sowing dates from 01-Jan to 15-Feb. For this window, the probability of obtaining yields above 3,500 kg ha-1 was higher than 90 %. KEYWORDS: Glycine max, CROPGRO-Soybean, optimum sowing window. |
publishDate |
2019 |
dc.date.none.fl_str_mv |
2019-06-03 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion Avaliado por pares |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://revistas.ufg.br/pat/article/view/54595 |
url |
https://revistas.ufg.br/pat/article/view/54595 |
dc.language.iso.fl_str_mv |
eng |
language |
eng |
dc.relation.none.fl_str_mv |
https://revistas.ufg.br/pat/article/view/54595/33238 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Escola de Agronomia - Universidade Federal de Goiás |
publisher.none.fl_str_mv |
Escola de Agronomia - Universidade Federal de Goiás |
dc.source.none.fl_str_mv |
Pesquisa Agropecuária Tropical [Agricultural Research in the Tropics]; Vol. 49 (2019); e54595 Pesquisa Agropecuária Tropical (Agricultural Research in the Tropics); Vol. 49 (2019); e54595 Pesquisa Agropecuária Tropical; v. 49 (2019); e54595 1983-4063 reponame:Pesquisa Agropecuária Tropical (Online) instname:Universidade Federal de Goiás (UFG) instacron:UFG |
instname_str |
Universidade Federal de Goiás (UFG) |
instacron_str |
UFG |
institution |
UFG |
reponame_str |
Pesquisa Agropecuária Tropical (Online) |
collection |
Pesquisa Agropecuária Tropical (Online) |
repository.name.fl_str_mv |
Pesquisa Agropecuária Tropical (Online) - Universidade Federal de Goiás (UFG) |
repository.mail.fl_str_mv |
aseleguini.pat@gmail.com||mgoes@agro.ufg.br |
_version_ |
1799874820404412416 |