Spatial distribution of patients served in the emergency of a tertiary hospital
Autor(a) principal: | |
---|---|
Data de Publicação: | 2020 |
Outros Autores: | , , , , |
Tipo de documento: | Artigo |
Idioma: | por |
Título da fonte: | HU Revista (Online) |
Texto Completo: | https://periodicos.ufjf.br/index.php/hurevista/article/view/30138 |
Resumo: | Introduction: In practice and research, the use of technologies that assist the work of professionals, such as geoprocessing, is increasingly present, useful for investigating spatial variables of a given phenomenon, when searching for data, using geostatistical tools. Objective: To analyze the spatial distribution of patients seen in the emergency department of a tertiary hospital. Material and Methods: Cross-sectional study, carried out from July to September 2017, in the emergency of a tertiary hospital, with 783 care records/medical records. The spatial analysis was performed with the Quantum GIS 2.18.10 software. Results: Most of the consultations were male (63,9%), with an average age of 52 years. Those from the surrounding cities (75,6%) had a risk classification, predominantly, in yellow and red, while the classification in green and yellow prevailed among patients in the same municipality where the hospital was located. The visits were made to patients from the northern region of the state of Ceará, with greater density in the municipalities of the Sobral macro-region, however, there were visits to patients from Fortaleza and the state's backlands. Conclusion: The spatial distribution points out that the emergency department visits covered patients from the north of the state of Ceará, the hinterland and the metropolitan region of the state capital. The attendance density and risk classification in blue and green colors were directly proportional to the geographical proximity to the hospital, while the yellow and red colors had an inversely proportional relationship with such distance. |
id |
UFJF-8_b0dd2273a7c0ec4020f66b51ac9d7447 |
---|---|
oai_identifier_str |
oai:periodicos.ufjf.br:article/30138 |
network_acronym_str |
UFJF-8 |
network_name_str |
HU Revista (Online) |
repository_id_str |
|
spelling |
Spatial distribution of patients served in the emergency of a tertiary hospitalDistribuição espacial de pacientes atendidos na emergência de hospital terciário Spatial AnalysisEmergenciesEmergency Hospital ServiceEmergency IdentificationHealth Service Needs and DemandsAnálise EspacialEmergênciasServiço Hospitalar de EmergênciaIdentificação da EmergênciaNecessidades e Demandas de Serviços de SaúdeIntroduction: In practice and research, the use of technologies that assist the work of professionals, such as geoprocessing, is increasingly present, useful for investigating spatial variables of a given phenomenon, when searching for data, using geostatistical tools. Objective: To analyze the spatial distribution of patients seen in the emergency department of a tertiary hospital. Material and Methods: Cross-sectional study, carried out from July to September 2017, in the emergency of a tertiary hospital, with 783 care records/medical records. The spatial analysis was performed with the Quantum GIS 2.18.10 software. Results: Most of the consultations were male (63,9%), with an average age of 52 years. Those from the surrounding cities (75,6%) had a risk classification, predominantly, in yellow and red, while the classification in green and yellow prevailed among patients in the same municipality where the hospital was located. The visits were made to patients from the northern region of the state of Ceará, with greater density in the municipalities of the Sobral macro-region, however, there were visits to patients from Fortaleza and the state's backlands. Conclusion: The spatial distribution points out that the emergency department visits covered patients from the north of the state of Ceará, the hinterland and the metropolitan region of the state capital. The attendance density and risk classification in blue and green colors were directly proportional to the geographical proximity to the hospital, while the yellow and red colors had an inversely proportional relationship with such distance.Introdução: Na prática e pesquisa é cada vez mais presente o uso de tecnologias que auxiliam o trabalho dos profissionais, como o geoprocessamento, útil para investigar variáveis espaciais de determinado fenômeno, quando se busca averiguar dados, a partir de ferramentas geoestatísticas. Objetivo: Analisar a distribuição espacial de pacientes atendidos no setor emergência de hospital terciário. Material e Métodos: Estudo transversal, realizado de julho a setembro de 2017, na emergência de hospital terciário, com 783 fichas de atendimento/prontuários. A análise espacial foi realizada com o software Quantum GIS 2.18.10. Resultados: A maioria dos atendimentos foi do sexo masculino (63,9%), com idade média de 52 anos. Os procedentes das cidades circunvizinhas (75,6%) possuíram classificação de risco, predominantemente, nas cores amarela e vermelha, enquanto a classificação nas cores verde e amarela prevaleceu dentre os pacientes do mesmo município de localização do hospital. Os atendimentos ocorreram a pacientes oriundos da região norte do estado do Ceará, com maior densidade nos municípios da macrorregião de Sobral, entretanto, houve atendimentos a pacientes de Fortaleza e sertão do estado. Conclusão: A distribuição espacial aponta que os atendimentos do setor de emergência contemplaram pacientes do norte do estado do Ceará, sertão e região metropolitana da capital do estado. A densidade de atendimentos e classificação de risco nas cores azul e verde foi diretamente proporcional à proximidade geográfica com o hospital, enquanto as cores amarela e vermelha possuíram relação inversamente proporcional com tal distância.Editora UFJF2020-08-21info:eu-repo/semantics/articleinfo:eu-repo/semantics/publishedVersionArtOrapplication/pdfhttps://periodicos.ufjf.br/index.php/hurevista/article/view/3013810.34019/1982-8047.2020.v46.30138HU Revista; v. 46 (2020); 1-71982-80470103-3123reponame:HU Revista (Online)instname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFporhttps://periodicos.ufjf.br/index.php/hurevista/article/view/30138/21022Copyright (c) 2020 Odézio Damasceno Brito, Maria Girlane Sousa Albuquerque Brandão, Ismael Brioso Bastos, Nelson Miguel Galindo Neto, Joselany Áfio Caetano, Lívia Moreira Barrosinfo:eu-repo/semantics/openAccessDamasceno Brito, Odézio Albuquerque Brandão, Maria Girlane SousaBrioso Bastos, IsmaelGalindo Neto, Nelson Miguel Áfio Caetano, Joselany Moreira Barros, Lívia 2020-11-20T19:39:29Zoai:periodicos.ufjf.br:article/30138Revistahttps://periodicos.ufjf.br/index.php/hurevistaPUBhttps://periodicos.ufjf.br/index.php/hurevista/oairevista.hurevista@ufjf.edu.br1982-80470103-3123opendoar:2020-11-20T19:39:29HU Revista (Online) - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.none.fl_str_mv |
Spatial distribution of patients served in the emergency of a tertiary hospital Distribuição espacial de pacientes atendidos na emergência de hospital terciário |
title |
Spatial distribution of patients served in the emergency of a tertiary hospital |
spellingShingle |
Spatial distribution of patients served in the emergency of a tertiary hospital Damasceno Brito, Odézio Spatial Analysis Emergencies Emergency Hospital Service Emergency Identification Health Service Needs and Demands Análise Espacial Emergências Serviço Hospitalar de Emergência Identificação da Emergência Necessidades e Demandas de Serviços de Saúde |
title_short |
Spatial distribution of patients served in the emergency of a tertiary hospital |
title_full |
Spatial distribution of patients served in the emergency of a tertiary hospital |
title_fullStr |
Spatial distribution of patients served in the emergency of a tertiary hospital |
title_full_unstemmed |
Spatial distribution of patients served in the emergency of a tertiary hospital |
title_sort |
Spatial distribution of patients served in the emergency of a tertiary hospital |
author |
Damasceno Brito, Odézio |
author_facet |
Damasceno Brito, Odézio Albuquerque Brandão, Maria Girlane Sousa Brioso Bastos, Ismael Galindo Neto, Nelson Miguel Áfio Caetano, Joselany Moreira Barros, Lívia |
author_role |
author |
author2 |
Albuquerque Brandão, Maria Girlane Sousa Brioso Bastos, Ismael Galindo Neto, Nelson Miguel Áfio Caetano, Joselany Moreira Barros, Lívia |
author2_role |
author author author author author |
dc.contributor.author.fl_str_mv |
Damasceno Brito, Odézio Albuquerque Brandão, Maria Girlane Sousa Brioso Bastos, Ismael Galindo Neto, Nelson Miguel Áfio Caetano, Joselany Moreira Barros, Lívia |
dc.subject.por.fl_str_mv |
Spatial Analysis Emergencies Emergency Hospital Service Emergency Identification Health Service Needs and Demands Análise Espacial Emergências Serviço Hospitalar de Emergência Identificação da Emergência Necessidades e Demandas de Serviços de Saúde |
topic |
Spatial Analysis Emergencies Emergency Hospital Service Emergency Identification Health Service Needs and Demands Análise Espacial Emergências Serviço Hospitalar de Emergência Identificação da Emergência Necessidades e Demandas de Serviços de Saúde |
description |
Introduction: In practice and research, the use of technologies that assist the work of professionals, such as geoprocessing, is increasingly present, useful for investigating spatial variables of a given phenomenon, when searching for data, using geostatistical tools. Objective: To analyze the spatial distribution of patients seen in the emergency department of a tertiary hospital. Material and Methods: Cross-sectional study, carried out from July to September 2017, in the emergency of a tertiary hospital, with 783 care records/medical records. The spatial analysis was performed with the Quantum GIS 2.18.10 software. Results: Most of the consultations were male (63,9%), with an average age of 52 years. Those from the surrounding cities (75,6%) had a risk classification, predominantly, in yellow and red, while the classification in green and yellow prevailed among patients in the same municipality where the hospital was located. The visits were made to patients from the northern region of the state of Ceará, with greater density in the municipalities of the Sobral macro-region, however, there were visits to patients from Fortaleza and the state's backlands. Conclusion: The spatial distribution points out that the emergency department visits covered patients from the north of the state of Ceará, the hinterland and the metropolitan region of the state capital. The attendance density and risk classification in blue and green colors were directly proportional to the geographical proximity to the hospital, while the yellow and red colors had an inversely proportional relationship with such distance. |
publishDate |
2020 |
dc.date.none.fl_str_mv |
2020-08-21 |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/article info:eu-repo/semantics/publishedVersion ArtOr |
format |
article |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://periodicos.ufjf.br/index.php/hurevista/article/view/30138 10.34019/1982-8047.2020.v46.30138 |
url |
https://periodicos.ufjf.br/index.php/hurevista/article/view/30138 |
identifier_str_mv |
10.34019/1982-8047.2020.v46.30138 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.relation.none.fl_str_mv |
https://periodicos.ufjf.br/index.php/hurevista/article/view/30138/21022 |
dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
eu_rights_str_mv |
openAccess |
dc.format.none.fl_str_mv |
application/pdf |
dc.publisher.none.fl_str_mv |
Editora UFJF |
publisher.none.fl_str_mv |
Editora UFJF |
dc.source.none.fl_str_mv |
HU Revista; v. 46 (2020); 1-7 1982-8047 0103-3123 reponame:HU Revista (Online) instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
HU Revista (Online) |
collection |
HU Revista (Online) |
repository.name.fl_str_mv |
HU Revista (Online) - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
revista.hurevista@ufjf.edu.br |
_version_ |
1796798243864051712 |