Algoritmos para geração da frente de Pareto da regressão Lasso
Autor(a) principal: | |
---|---|
Data de Publicação: | 2023 |
Tipo de documento: | Dissertação |
Idioma: | por |
Título da fonte: | Repositório Institucional da UFJF |
Texto Completo: | https://repositorio.ufjf.br/jspui/handle/ufjf/15302 |
Resumo: | Problemas de modelagem podem envolver um número muito elevado de variáveis de entrada, principalmente quando estamos interessados em estudar dados experimentais e obter um modelo explicativo para um certo fenômeno ou evento a partir destes. Em geral, deseja-se que o modelo seja interpretável e que seja possível obter uma conclusão clara sobre a relação de cada variável explicativa com a resposta, onde um número muito grande de variáveis pode dificultar tal interpretação. A utilização da regressão Lasso é uma opção viável para obter modelos com um menor número de variáveis de entrada, enquanto mantendo a precisão obtida pelos mesmos. No entanto, a geração de modelos a partir do Lasso exige maior esforço computacional quando comparado a outros métodos, e por esse motivo é importante que o processo de geração destes modelos seja eficiente. Nesse estudo, realizamos a análise de diferentes algoritmos para a geração de modelos a partir do Lasso, bem como formas de reduzir o esforço computacional quando desejamos obter diversos modelos, para diferentes valores do parâmetro de regularização, para um dado problema, por meio da aproximação da frente de Pareto do Lasso. |
id |
UFJF_0581e3ef5665634b0a3bb219d6ff5d5b |
---|---|
oai_identifier_str |
oai:hermes.cpd.ufjf.br:ufjf/15302 |
network_acronym_str |
UFJF |
network_name_str |
Repositório Institucional da UFJF |
repository_id_str |
|
spelling |
Freire, Wilhelm Passarellahttp://buscatextual.cnpq.br/buscatextual/busca.doMazorche, Sandro Rodrigueshttp://buscatextual.cnpq.br/buscatextual/busca.doFranco, Hernando José Rochahttp://buscatextual.cnpq.br/buscatextual/busca.dohttp://buscatextual.cnpq.br/buscatextual/busca.doMachado, Gabriel de Oliveira2023-04-24T15:22:21Z2023-04-242023-04-24T15:22:21Z2023-03-16https://repositorio.ufjf.br/jspui/handle/ufjf/15302Problemas de modelagem podem envolver um número muito elevado de variáveis de entrada, principalmente quando estamos interessados em estudar dados experimentais e obter um modelo explicativo para um certo fenômeno ou evento a partir destes. Em geral, deseja-se que o modelo seja interpretável e que seja possível obter uma conclusão clara sobre a relação de cada variável explicativa com a resposta, onde um número muito grande de variáveis pode dificultar tal interpretação. A utilização da regressão Lasso é uma opção viável para obter modelos com um menor número de variáveis de entrada, enquanto mantendo a precisão obtida pelos mesmos. No entanto, a geração de modelos a partir do Lasso exige maior esforço computacional quando comparado a outros métodos, e por esse motivo é importante que o processo de geração destes modelos seja eficiente. Nesse estudo, realizamos a análise de diferentes algoritmos para a geração de modelos a partir do Lasso, bem como formas de reduzir o esforço computacional quando desejamos obter diversos modelos, para diferentes valores do parâmetro de regularização, para um dado problema, por meio da aproximação da frente de Pareto do Lasso.Modeling problems can involve a very large number of input variables, especially when we are interested in studying experimental data and obtaining an explanatory model for a certain phenomenon or event from them. In general, it is desired that the model be interpretable and that a clear conclusion can be obtained about the relationship of each input variable to the response, where a large number of variables can make such interpretation difficult. The use of Lasso regression is a viable option for obtaining models with a smaller number of input variables, while maintaining the accuracy obtained by them. However, generating models from Lasso requires greater computational effort compared to other methods, and for this reason, it is important that the process of generating these models is efficient. In this study, we conducted an analysis of different algorithms for generating models from Lasso, as well as ways to reduce computational effort when we want to obtain multiple models for different regularization parameter values for a given problem, by approximating the Pareto front of Lasso.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorporUniversidade Federal de Juiz de Fora (UFJF)Mestrado Acadêmico em MatemáticaUFJFBrasilICE – Instituto de Ciências ExatasAttribution-ShareAlike 3.0 Brazilhttp://creativecommons.org/licenses/by-sa/3.0/br/info:eu-repo/semantics/openAccessCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAOtimização multiobjetivoRegressão LassoOtimizaçãoMultiobjective optimizationLasso regressionOptimizationAlgoritmos para geração da frente de Pareto da regressão Lassoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFJFinstname:Universidade Federal de Juiz de Fora (UFJF)instacron:UFJFCC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-81031https://repositorio.ufjf.br/jspui/bitstream/ufjf/15302/2/license_rdf9b85e4235558a2887c2be3998124b615MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufjf.br/jspui/bitstream/ufjf/15302/3/license.txt8a4605be74aa9ea9d79846c1fba20a33MD53ORIGINALgabrieldeoliveiramachado.pdfgabrieldeoliveiramachado.pdfapplication/pdf8302210https://repositorio.ufjf.br/jspui/bitstream/ufjf/15302/1/gabrieldeoliveiramachado.pdf151b579adef7bb625d3e66fd84f70d39MD51TEXTgabrieldeoliveiramachado.pdf.txtgabrieldeoliveiramachado.pdf.txtExtracted texttext/plain76583https://repositorio.ufjf.br/jspui/bitstream/ufjf/15302/4/gabrieldeoliveiramachado.pdf.txtf6cc4e8557712480481d82c6e1ae17edMD54THUMBNAILgabrieldeoliveiramachado.pdf.jpggabrieldeoliveiramachado.pdf.jpgGenerated Thumbnailimage/jpeg1143https://repositorio.ufjf.br/jspui/bitstream/ufjf/15302/5/gabrieldeoliveiramachado.pdf.jpg614e80b6b370a3a7567f156edc6e25f5MD55ufjf/153022023-04-25 03:12:39.282oai:hermes.cpd.ufjf.br:ufjf/15302Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufjf.br/oai/requestopendoar:2023-04-25T06:12:39Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF)false |
dc.title.pt_BR.fl_str_mv |
Algoritmos para geração da frente de Pareto da regressão Lasso |
title |
Algoritmos para geração da frente de Pareto da regressão Lasso |
spellingShingle |
Algoritmos para geração da frente de Pareto da regressão Lasso Machado, Gabriel de Oliveira CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Otimização multiobjetivo Regressão Lasso Otimização Multiobjective optimization Lasso regression Optimization |
title_short |
Algoritmos para geração da frente de Pareto da regressão Lasso |
title_full |
Algoritmos para geração da frente de Pareto da regressão Lasso |
title_fullStr |
Algoritmos para geração da frente de Pareto da regressão Lasso |
title_full_unstemmed |
Algoritmos para geração da frente de Pareto da regressão Lasso |
title_sort |
Algoritmos para geração da frente de Pareto da regressão Lasso |
author |
Machado, Gabriel de Oliveira |
author_facet |
Machado, Gabriel de Oliveira |
author_role |
author |
dc.contributor.advisor1.fl_str_mv |
Freire, Wilhelm Passarella |
dc.contributor.advisor1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/busca.do |
dc.contributor.referee1.fl_str_mv |
Mazorche, Sandro Rodrigues |
dc.contributor.referee1Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/busca.do |
dc.contributor.referee2.fl_str_mv |
Franco, Hernando José Rocha |
dc.contributor.referee2Lattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/busca.do |
dc.contributor.authorLattes.fl_str_mv |
http://buscatextual.cnpq.br/buscatextual/busca.do |
dc.contributor.author.fl_str_mv |
Machado, Gabriel de Oliveira |
contributor_str_mv |
Freire, Wilhelm Passarella Mazorche, Sandro Rodrigues Franco, Hernando José Rocha |
dc.subject.cnpq.fl_str_mv |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
topic |
CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA Otimização multiobjetivo Regressão Lasso Otimização Multiobjective optimization Lasso regression Optimization |
dc.subject.por.fl_str_mv |
Otimização multiobjetivo Regressão Lasso Otimização Multiobjective optimization Lasso regression Optimization |
description |
Problemas de modelagem podem envolver um número muito elevado de variáveis de entrada, principalmente quando estamos interessados em estudar dados experimentais e obter um modelo explicativo para um certo fenômeno ou evento a partir destes. Em geral, deseja-se que o modelo seja interpretável e que seja possível obter uma conclusão clara sobre a relação de cada variável explicativa com a resposta, onde um número muito grande de variáveis pode dificultar tal interpretação. A utilização da regressão Lasso é uma opção viável para obter modelos com um menor número de variáveis de entrada, enquanto mantendo a precisão obtida pelos mesmos. No entanto, a geração de modelos a partir do Lasso exige maior esforço computacional quando comparado a outros métodos, e por esse motivo é importante que o processo de geração destes modelos seja eficiente. Nesse estudo, realizamos a análise de diferentes algoritmos para a geração de modelos a partir do Lasso, bem como formas de reduzir o esforço computacional quando desejamos obter diversos modelos, para diferentes valores do parâmetro de regularização, para um dado problema, por meio da aproximação da frente de Pareto do Lasso. |
publishDate |
2023 |
dc.date.accessioned.fl_str_mv |
2023-04-24T15:22:21Z |
dc.date.available.fl_str_mv |
2023-04-24 2023-04-24T15:22:21Z |
dc.date.issued.fl_str_mv |
2023-03-16 |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufjf.br/jspui/handle/ufjf/15302 |
url |
https://repositorio.ufjf.br/jspui/handle/ufjf/15302 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-ShareAlike 3.0 Brazil http://creativecommons.org/licenses/by-sa/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-ShareAlike 3.0 Brazil http://creativecommons.org/licenses/by-sa/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.publisher.program.fl_str_mv |
Mestrado Acadêmico em Matemática |
dc.publisher.initials.fl_str_mv |
UFJF |
dc.publisher.country.fl_str_mv |
Brasil |
dc.publisher.department.fl_str_mv |
ICE – Instituto de Ciências Exatas |
publisher.none.fl_str_mv |
Universidade Federal de Juiz de Fora (UFJF) |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFJF instname:Universidade Federal de Juiz de Fora (UFJF) instacron:UFJF |
instname_str |
Universidade Federal de Juiz de Fora (UFJF) |
instacron_str |
UFJF |
institution |
UFJF |
reponame_str |
Repositório Institucional da UFJF |
collection |
Repositório Institucional da UFJF |
bitstream.url.fl_str_mv |
https://repositorio.ufjf.br/jspui/bitstream/ufjf/15302/2/license_rdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/15302/3/license.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/15302/1/gabrieldeoliveiramachado.pdf https://repositorio.ufjf.br/jspui/bitstream/ufjf/15302/4/gabrieldeoliveiramachado.pdf.txt https://repositorio.ufjf.br/jspui/bitstream/ufjf/15302/5/gabrieldeoliveiramachado.pdf.jpg |
bitstream.checksum.fl_str_mv |
9b85e4235558a2887c2be3998124b615 8a4605be74aa9ea9d79846c1fba20a33 151b579adef7bb625d3e66fd84f70d39 f6cc4e8557712480481d82c6e1ae17ed 614e80b6b370a3a7567f156edc6e25f5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFJF - Universidade Federal de Juiz de Fora (UFJF) |
repository.mail.fl_str_mv |
|
_version_ |
1813193912161927168 |